0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Artificial Intelligence Approach for Bio-Based Materials’ Characterization and Explanation

Autor(en): ORCID
ORCID
ORCID


ORCID

Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Buildings, , n. 6, v. 14
Seite(n): 1602
DOI: 10.3390/buildings14061602
Abstrakt:

This paper introduces a numerical methodology for classifying and identifying types of bio-based materials through experimental thermal characterization. In contrast to prevailing approaches that primarily focus on thermal conductivity, our characterization methodology encompasses several thermal parameters. In this paper, the physical characteristics of seven types of bio-based concrete were analyzed, focusing on the thermal properties of palm- and esparto-fiber-reinforced concrete. The proposed method uses artificial intelligence techniques, specifically the k-means clustering approach, to segregate data into homogeneous groups with shared thermal characteristics. This enables the elucidation of insights and recommendations regarding the utilization of bio-based insulation in building applications. The results show that the k-means algorithm is able to efficiently classify the reference concrete (RC) with a performance of up to 71%. Additionally, the technique is more accurate when retaining only six centroids, which, among other things, allows all the characteristics associated with each type of concrete to be grouped and identified. Indeed, whether for k clusters k = 7 or k = 5, the technique was not able to predict the typical characteristics of 2% or 3% esparto concrete (EC).

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
Lizenz:

Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden.

  • Über diese
    Datenseite
  • Reference-ID
    10787575
  • Veröffentlicht am:
    20.06.2024
  • Geändert am:
    20.06.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine