Artificial Intelligence Approach for Bio-Based Materials’ Characterization and Explanation
Autor(en): |
Ahmed Alami
Lala Rajaoarisoa Nicolas Dujardin Ali Benouar Khacem Kaddouri Khedidja Benouis Mohammed-Hichem Benzaama |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Buildings, 19 Juni 2024, n. 6, v. 14 |
Seite(n): | 1602 |
DOI: | 10.3390/buildings14061602 |
Abstrakt: |
This paper introduces a numerical methodology for classifying and identifying types of bio-based materials through experimental thermal characterization. In contrast to prevailing approaches that primarily focus on thermal conductivity, our characterization methodology encompasses several thermal parameters. In this paper, the physical characteristics of seven types of bio-based concrete were analyzed, focusing on the thermal properties of palm- and esparto-fiber-reinforced concrete. The proposed method uses artificial intelligence techniques, specifically the k-means clustering approach, to segregate data into homogeneous groups with shared thermal characteristics. This enables the elucidation of insights and recommendations regarding the utilization of bio-based insulation in building applications. The results show that the k-means algorithm is able to efficiently classify the reference concrete (RC) with a performance of up to 71%. Additionally, the technique is more accurate when retaining only six centroids, which, among other things, allows all the characteristics associated with each type of concrete to be grouped and identified. Indeed, whether for k clusters k = 7 or k = 5, the technique was not able to predict the typical characteristics of 2% or 3% esparto concrete (EC). |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
3.41 MB
- Über diese
Datenseite - Reference-ID
10787575 - Veröffentlicht am:
20.06.2024 - Geändert am:
20.06.2024