Application of Smart Modelling Framework for Traditional Wooden Architecture
Autor(en): |
Jialong Zhang
Zijun Wang Wei Wang |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Buildings, 2 Juli 2024, n. 7, v. 14 |
Seite(n): | 2130 |
DOI: | 10.3390/buildings14072130 |
Abstrakt: |
Preserving ancient buildings can be improved using Building Information Modelling (BIM) models created from high-quality point-cloud data. The problems arise from the need for automatic extraction of the characteristics required to meet various security criteria from a high-fidelity point cloud. BIM for Traditional Wooden Architecture (TWA) constructions requires collaboration across various research fields. Two crucial concerns are needed to overcome the current gap and enhance the use of BIM: an automated model for the major components that smartly combines historical information and a Smart Modelling Framework (SMF) to represent these components. First, a parametric model for the usual components, highlighting similarities and properties, was created using a TWA structure as the basis. The next step is creating an automated modelling approach to determine the component type and hidden dimensions automatically. Conservation initiatives for traditional wooden structures will benefit greatly from this research results. The experimental results demonstrate that the suggested technique accomplishes better efficiency, reliability, and effectiveness than other existing technologies. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
3.44 MB
- Über diese
Datenseite - Reference-ID
10795511 - Veröffentlicht am:
01.09.2024 - Geändert am:
01.09.2024