0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Application of machine learning approaches for modelling crack growth rates

Autor(en): (Department of Civil Engineering and Energy Technology, OsloMet—Oslo Metropolitan University 0167 Oslo Norway)
(Department of Civil and Architectural Engineering Qatar University Doha Qatar)
Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: ce/papers, , n. 3-4, v. 6
Seite(n): 860-865
DOI: 10.1002/cepa.2639
Abstrakt:

The scientific community has widely accepted the use of machine learning techniques to tackle complex engineering problems. Among the most intriguing problems is finding the correlation between alloy steel properties and cyclic fatigue and crack growth rate. Employing machine‐learning models can provide more robust and accurate predictive models to address such challenges. This paper presents the application of four machine learning models, namely decision trees (DT), random forest (RF), adoptive boosting (AdaBoost), and gradient boosting regression tree (GBRT) to predict the crack growth rate of steel/alloys. The study utilizes a large database gathered from literature to construct the predictive models and compares the results using various statistical metrics and graphical representation. The study's findings demonstrate the effectiveness and suitability of machine learning techniques to handle complex databases related to fatigue problems.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1002/cepa.2639.
  • Über diese
    Datenseite
  • Reference-ID
    10767352
  • Veröffentlicht am:
    17.04.2024
  • Geändert am:
    17.04.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine