0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Application of deep learning for technological parameter optimization of laser shock peening of Ti-6Al-4V alloy

Autor(en): ORCID
ORCID

ORCID
ORCID

Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Frattura ed Integrità Strutturale, , n. 70, v. 18
Seite(n): 121-132
DOI: 10.3221/igf-esis.70.07
Abstrakt:

The paper is devoted to the development of the method of laser shock peening (LSP) of metals. To optimize the mode of LSP for Ti-6Al-4V specimens a deep learning model for predicting residual stresses by laser shock peening was developed. A numerical-experimental method was used to carry out the model training, in which an experimental study of the effect of different processing mode on the depth and distribution of residual stresses was carried out. The Johnson-Cook model was used as the governing relationship for modeling the dynamic deformation process. At the second stage, the problem of static equilibrium of a body with a plastically deformed area was numerically solved to determine residual stresses. The results of research on determination of the optimal configuration of the deep learning model showed that when using sinusoidal activation function of the neural network with 4 hidden layers and the number of neurons 10, the best level of accuracy in solving the problem is achieved. The obtained model allows us to optimally determine the LSP mode according to the given limitations of values and depth of residual stresses.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.3221/igf-esis.70.07.
  • Über diese
    Datenseite
  • Reference-ID
    10798253
  • Veröffentlicht am:
    01.09.2024
  • Geändert am:
    01.09.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine