0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Applicability of Deep Learning Algorithms for Predicting Indoor Temperatures: Towards the Development of Digital Twin HVAC Systems

Autor(en):


Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Buildings, , n. 6, v. 13
Seite(n): 1542
DOI: 10.3390/buildings13061542
Abstrakt:

The development of digital twins leads to the pathway toward intelligent buildings. Today, the overwhelming rate of data in buildings carries a high amount of information that can provide an opportunity for a digital representation of the buildings and energy optimization strategies in the Heating, Ventilation, and Air Conditioning (HVAC) systems. To implement a successful energy management strategy in a building, a data-driven approach should accurately forecast the HVAC features, in particular the indoor temperatures. Accurate predictions not only increase thermal comfort levels, but also play a crucial role in saving energy consumption. This study aims to investigate the capabilities of data-driven approaches and the development of a model for predicting indoor temperatures. A case study of an educational building is considered to forecast indoor temperatures using machine learning and deep learning algorithms. The algorithms’ performance is evaluated and compared. The important model parameters are sorted out before choosing the best architecture. Considering real data, prediction models are created for indoor temperatures. The results reveal that all the investigated models are successful in predicting indoor temperatures. Hence, the proposed deep neural network model obtained the highest accuracy with an average RMSE of 0.16 °C, which renders it the best candidate for the development of a digital twin.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
Lizenz:

Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden.

  • Über diese
    Datenseite
  • Reference-ID
    10732808
  • Veröffentlicht am:
    04.08.2023
  • Geändert am:
    07.08.2023
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine