0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Active Contour Building Segmentation Model based on Convolution Neural Network

Autor(en):




Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: IOP Conference Series: Earth and Environmental Science, , n. 1, v. 1004
Seite(n): 012015
DOI: 10.1088/1755-1315/1004/1/012015
Abstrakt:

In high-resolution remote sensing images, artificial features on the surface account for a large proportion. In artificial features, buildings, as special artificial features, buildings have different shapes. They are easily affected by light, so it takes a long time to extract using traditional image segmentation methods. It can't effectively design feature engineering to depict the high-dimensional features of the target building. We propose an active contour model based on a convolution neural network, which integrates the prior knowledge and constraints of active contour model, such as continuity of boundary, smooth edge, and geometric characteristics of buildings, into the learning process of convolution neural network to realize the close unity of ACM and CNN. According to our work, a fundamental end-to-end trainable image segmentation framework which is composed of convolution neural network (CNN) and ACM with learnable parameters is implemented, the problem of semantic segmentation of buildings in aerial images was dealt with, the model was evaluated on the publicly available dataset called Vaihingen, and some parameters were explained. In building semantics, the active contour model based on a convolution neural network has good performance.

Lizenz:

Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 3.0 (CC-BY 3.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden.

  • Über diese
    Datenseite
  • Reference-ID
    10780693
  • Veröffentlicht am:
    12.05.2024
  • Geändert am:
    12.05.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine