0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Die folgende Bibliografie enthält alle in dieser Datenbank indizierten Veröffentlichungen, die mit diesem Namen als Autor, Herausgeber oder anderweitig Beitragenden verbunden sind.

  1. Xue, Wenping / Zhang, Guangfa / Chen, Lei / Li, Kangji (2024): Developing a novel personal thermoelectric comfort system for improving indoor occupant’s thermal comfort. In: Journal of Building Engineering, v. 84 (Mai 2024).

    https://doi.org/10.1016/j.jobe.2024.108561

  2. Li, Kangji / Liu, Yufei / Chen, Lei / Xue, Wenping (2024): Data efficient indoor thermal comfort prediction using instance based transfer learning method. In: Energy and Buildings, v. 306 (März 2024).

    https://doi.org/10.1016/j.enbuild.2024.113920

  3. Wei, Borui / Li, Kangji / Zhou, Shiyi / Xue, Wenping / Tan, Gang (2024): An instance based multi-source transfer learning strategy for building’s short-term electricity loads prediction under sparse data scenarios. In: Journal of Building Engineering, v. 85 (Mai 2024).

    https://doi.org/10.1016/j.jobe.2024.108713

  4. Li, Kangji / Li, Weiwei / Liu, Fukang / Xue, Wenping (2023): Non-invasive human thermal comfort assessment based on multiple angle/distance facial key-region temperatures recognition. In: Building and Environment, v. 246 (Dezember 2023).

    https://doi.org/10.1016/j.buildenv.2023.110956

  5. Li, Kangji / Zheng, Wen / Xue, Wenping / Wang, Zifeng (2023): Fast reconstruction of indoor temperature field for large-space building based on limited sensors: An experimental study. In: Energy and Buildings, v. 298 (November 2023).

    https://doi.org/10.1016/j.enbuild.2023.113493

  6. Li, Kangji / Yu, Rui / Liu, Yufei / Wang, Junqiang / Xue, Wenping (2023): Correlation analysis and modeling of human thermal sensation with multiple physiological markers: An experimental study. In: Energy and Buildings, v. 278 (Januar 2023).

    https://doi.org/10.1016/j.enbuild.2022.112643

  7. Li, Kangji / Zhang, Jinxing / Chen, Xu / Xue, Wenping (2022): Building’s hourly electrical load prediction based on data clustering and ensemble learning strategy. In: Energy and Buildings, v. 261 (April 2022).

    https://doi.org/10.1016/j.enbuild.2022.111943

  8. Tian, Jing / Li, Kangji / Xue, Wenping (2021): An adaptive ensemble predictive strategy for multiple scale electrical energy usages forecasting. In: Sustainable Cities and Society, v. 66 (März 2021).

    https://doi.org/10.1016/j.scs.2020.102654

  9. Li, Kangji / Xue, Wenping / Tan, Gang / Denzer, Anthony S. (2019): A state of the art review on the prediction of building energy consumption using data-driven technique and evolutionary algorithms. In: Building Services Engineering Research and Technology, v. 41, n. 1 (Dezember 2019).

    https://doi.org/10.1177/0143624419843647

  10. Li, Kangji / Tian, Jing / Xue, Wenping / Tan, Gang (2021): Short-term electricity consumption prediction for buildings using data-driven swarm intelligence based ensemble model. In: Energy and Buildings, v. 231 (Januar 2021).

    https://doi.org/10.1016/j.enbuild.2020.110558

  11. Li, Kangji / Xue, Wenping / Xu, Chao / Su, Hongye (2013): Optimization of ventilation system operation in office environment using POD model reduction and genetic algorithm. In: Energy and Buildings, v. 67 (Dezember 2013).

    https://doi.org/10.1016/j.enbuild.2013.07.075

  12. Li, Kangji / Hu, Chenglei / Liu, Guohai / Xue, Wenping (2015): Building's electricity consumption prediction using optimized artificial neural networks and principal component analysis. In: Energy and Buildings, v. 108 (Dezember 2015).

    https://doi.org/10.1016/j.enbuild.2015.09.002

  13. Li, Kangji / Xie, Xianming / Xue, Wenping / Dai, Xiaoli / Chen, Xu / Yang, Xinyun (2018): A hybrid teaching-learning artificial neural network for building electrical energy consumption prediction. In: Energy and Buildings, v. 174 (September 2018).

    https://doi.org/10.1016/j.enbuild.2018.06.017

Eine Veröffentlichung suchen...

Nur verfügbar mit
Mein Structurae

Volltext
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine