0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Chengliang Xu

Die folgende Bibliografie enthält alle in dieser Datenbank indizierten Veröffentlichungen, die mit diesem Namen als Autor, Herausgeber oder anderweitig Beitragenden verbunden sind.

  1. Xiong, Chenglong / Hu, Yunpeng / Li, Guannan / Yuan, Yuan / Xu, Chengliang / Zhang, Le / Zhan, Lei (2024): Interpretability assessment of convolutional neural network-based fault diagnosis for air handling units working in three seasons. In: Energy and Buildings, v. 324 (Dezember 2024).

    https://doi.org/10.1016/j.enbuild.2024.114876

  2. Xiong, Chenglong / Li, Guannan / Yan, Ying / Zhang, Hanyuan / Xu, Chengliang / Chen, Liang: Effects of various information scenarios on layer-wise relevance propagation-based interpretable convolutional neural networks for air handling unit fault diagnosis. In: Building Simulation.

    https://doi.org/10.1007/s12273-024-1154-1

  3. Li, Guannan / Yao, Zhanpeng / Chen, Liang / Li, Tao / Xu, Chengliang (2024): An interpretable graph convolutional neural network based fault diagnosis method for building energy systems. In: Building Simulation, v. 17, n. 7 (27 Juni 2024).

    https://doi.org/10.1007/s12273-024-1125-6

  4. Deng, Jiahui / Li, Guannan / Wu, Yubei / Chen, Jian / Fang, Xi / Xu, Chengliang (2024): A hybrid transfer learning to continual learning strategy for improving cross-building energy prediction in data increment scenario. In: Journal of Building Engineering, v. 95 (Oktober 2024).

    https://doi.org/10.1016/j.jobe.2024.110093

  5. Chen, Liang / Li, Guannan / Liu, Jiangyan / Liu, Lamei / Zhang, Chunzhi / Gao, Jiajia / Xu, Chengliang / Fang, Xi / Yao, Zhanpeng (2024): Fault diagnosis for cross-building energy systems based on transfer learning and model interpretation. In: Journal of Building Engineering, v. 91 (August 2024).

    https://doi.org/10.1016/j.jobe.2024.109424

  6. Li, Guannan / Wu, Yubei / Yan, Chengchu / Fang, Xi / Li, Tao / Gao, Jiajia / Xu, Chengliang / Wang, Zixi (2024): An improved transfer learning strategy for short_term cross-building energy prediction using data incremental. In: Building Simulation, v. 17, n. 1 (Januar 2024).

    https://doi.org/10.1007/s12273-023-1053-x

  7. Xu, Chengliang / Sun, Yongjun / Du, Anran / Gao, Dian-ce (2023): Quantile regression based probabilistic forecasting of renewable energy generation and building electrical load: A state of the art review. In: Journal of Building Engineering, v. 79 (November 2023).

    https://doi.org/10.1016/j.jobe.2023.107772

  8. Li, Guannan / Chen, Liang / Fan, Cheng / Li, Tao / Xu, Chengliang / Fang, Xi (2023): Interpretation and explanation of convolutional neural network-based fault diagnosis model at the feature-level for building energy systems. In: Energy and Buildings, v. 295 (September 2023).

    https://doi.org/10.1016/j.enbuild.2023.113326

  9. Li, Guannan / Wang, Luhan / Shen, Limei / Chen, Liang / Cheng, Hengda / Xu, Chengliang / Li, Fan (2023): Interpretation of convolutional neural network-based building HVAC fault diagnosis model using improved layer-wise relevance propagation. In: Energy and Buildings, v. 286 (Mai 2023).

    https://doi.org/10.1016/j.enbuild.2023.112949

  10. Li, Guannan / Li, Fan / Xu, Chengliang / Fang, Xi (2022): A spatial-temporal layer-wise relevance propagation method for improving interpretability and prediction accuracy of LSTM building energy prediction. In: Energy and Buildings, v. 271 (September 2022).

    https://doi.org/10.1016/j.enbuild.2022.112317

  11. Li, Guannan / Zheng, Yue / Liu, Jiangyan / Zhou, Zhenxin / Xu, Chengliang / Fang, Xi / Yao, Qing (2021): An improved stacking ensemble learning-based sensor fault detection method for building energy systems using fault-discrimination information. In: Journal of Building Engineering, v. 43 (November 2021).

    https://doi.org/10.1016/j.jobe.2021.102812

  12. Xu, Chengliang / Chen, Huanxin (2020): A hybrid data mining approach for anomaly detection and evaluation in residential buildings energy data. In: Energy and Buildings, v. 215 (Mai 2020).

    https://doi.org/10.1016/j.enbuild.2020.109864

  13. Liu, Tao / Tan, Zehan / Xu, Chengliang / Chen, Huanxin / Li, Zhengfei (2020): Study on deep reinforcement learning techniques for building energy consumption forecasting. In: Energy and Buildings, v. 208 (Februar 2020).

    https://doi.org/10.1016/j.enbuild.2019.109675

  14. Xu, Chengliang / Chen, Huanxin / Xun, Weide / Zhou, Zhenxin / Liu, Tao / Zeng, Yuke / Ahmad, Tanveer (2019): Modal decomposition based ensemble learning for ground source heat pump systems load forecasting. In: Energy and Buildings, v. 194 (Juli 2019).

    https://doi.org/10.1016/j.enbuild.2019.04.018

  15. Yuan, Ye / Xu, Chengliang / Xu, Tingni / Sun, Yueting / Liu, Bohan / Li, Yibing (2017): An analytical model for deformation and damage of rectangular laminated glass under low-velocity impact. In: Composite Structures, v. 176 (September 2017).

    https://doi.org/10.1016/j.compstruct.2017.06.029

  16. Xu, Chengliang / Chen, Huanxin / Wang, Jiangyu / Guo, Yabin / Yuan, Yue (2019): Improving prediction performance for indoor temperature in public buildings based on a novel deep learning method. In: Building and Environment, v. 148 (Januar 2019).

    https://doi.org/10.1016/j.buildenv.2018.10.062

Eine Veröffentlichung suchen...

Nur verfügbar mit
Mein Structurae

Volltext
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine