0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Die folgende Bibliografie enthält alle in dieser Datenbank indizierten Veröffentlichungen, die mit diesem Namen als Autor, Herausgeber oder anderweitig Beitragenden verbunden sind.

  1. Li, Qilin / Li, Ling / Shao, Yanda / Wang, Ruhua / Hao, Hong (2025): A multi-task machine learning approach for data efficient prediction of blast loading. In: Engineering Structures, v. 326 (März 2025).

    https://doi.org/10.1016/j.engstruct.2024.119577

  2. Wang, Ruhua / Li, Jun / Li, Ling / An, Senjian / Ezard, Bradley / Li, Qilin / Hao, Hong (2024): Structural damage identification by using physics-guided residual neural networks. In: Engineering Structures, v. 318 (November 2024).

    https://doi.org/10.1016/j.engstruct.2024.118703

  3. Wang, Ruhua / Shao, Yanda / Li, Qilin / Li, Ling / Li, Jun / Hao, Hong (2023): A novel transformer-based semantic segmentation framework for structural condition assessment. In: Structural Health Monitoring, v. 23, n. 2 (Juli 2023).

    https://doi.org/10.1177/14759217231182303

  4. Li, Jun / Hao, Hong / Wang, Ruhua / Li, Ling (2022): Structural damage quantification using ensemble‐based extremely randomised trees and impulse response functions. In: Structural Control and Health Monitoring, v. 29, n. 10 (13 September 2022).

    https://doi.org/10.1002/stc.3033

  5. Wang, Ruhua / Li, Jun / An, Senjian / Hao, Hong / Liu, Wanquan / Li, Ling (2021): Densely connected convolutional networks for vibration based structural damage identification. In: Engineering Structures, v. 245 (Oktober 2021).

    https://doi.org/10.1016/j.engstruct.2021.112871

  6. Wang, Ruhua / An, Senjian / Li, Jun / Li, Ling / Hao, Hong / Liu, Wanquan (2021): Deep residual network framework for structural health monitoring. In: Structural Health Monitoring, v. 20, n. 4 (April 2021).

    https://doi.org/10.1177/1475921720918378

  7. Pathirage, Chathurdara Sri Nadith / Li, Jun / Li, Ling / Hao, Hong / Liu, Wanquan / Wang, Ruhua (2017): Development and application of a deep learning–based sparse autoencoder framework for structural damage identification. In: Structural Health Monitoring, v. 18, n. 1 (Dezember 2017).

    https://doi.org/10.1177/1475921718800363

  8. Li, Jun / Hao, Hong / Wang, Ruhua / Li, Ling (2021): Development and application of random forest technique for element level structural damage quantification. In: Structural Control and Health Monitoring, v. 28, n. 3 (5 Februar 2021).

    https://doi.org/10.1002/stc.2678

Eine Veröffentlichung suchen...

Nur verfügbar mit
Mein Structurae

Volltext
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine