0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Mokhtar Mohammadi ORCID

Die folgende Bibliografie enthält alle in dieser Datenbank indizierten Veröffentlichungen, die mit diesem Namen als Autor, Herausgeber oder anderweitig Beitragenden verbunden sind.

  1. Mahmoodzadeh, Arsalan / Nejati, Hamid Reza / Mohammadi, Mokhtar / Hashim Ibrahim, Hawkar / Khishe, Mohammad / Rashidi, Shima / Hussein Mohammed, Adil (2022): Developing six hybrid machine learning models based on gaussian process regression and meta-heuristic optimization algorithms for prediction of duration and cost of road tunnels construction. In: Tunnelling and Underground Space Technology, v. 130 (Dezember 2022).

    https://doi.org/10.1016/j.tust.2022.104759

  2. Wang, Le / Khishe, Mohammad / Mohammadi, Mokhtar / Mahmoodzadeh, Arsalan (2022): Extreme learning machine evolved by fuzzified hunger games search for energy and individual thermal comfort optimization. In: Journal of Building Engineering, v. 60 (November 2022).

    https://doi.org/10.1016/j.jobe.2022.105187

  3. Mahmoodzadeh, Arsalan / Nejati, Hamid Reza / Mohammadi, Mokhtar (2022): Optimized machine learning modelling for predicting the construction cost and duration of tunnelling projects. In: Automation in Construction, v. 139 (Juli 2022).

    https://doi.org/10.1016/j.autcon.2022.104305

  4. Mahmoodzadeh, Arsalan / Mohammadi, Mokhtar / Nariman Abdulhamid, Sazan / Nejati, Hamid Reza / M Gharrib Noori, Krikar / Hashim Ibrahim, Hawkar / Farid Hama Ali, Hunar (2021): Predicting construction time and cost of tunnels using Markov chain model considering opinions of experts. In: Tunnelling and Underground Space Technology, v. 116 (Oktober 2021).

    https://doi.org/10.1016/j.tust.2021.104109

  5. Mahmoodzadeh, Arsalan / Mohammadi, Mokhtar / Hashim Ibrahim, Hawkar / Nariman Abdulhamid, Sazan / Farid Hama Ali, Hunar / Mohammed Hasan, Ahmed / Khishe, Mohammad / Mahmud, Hoger (2021): Machine learning forecasting models of disc cutters life of tunnel boring machine. In: Automation in Construction, v. 128 (August 2021).

    https://doi.org/10.1016/j.autcon.2021.103779

  6. Mahmoodzadeh, Arsalan / Mohammadi, Mokhtar / M Gharrib Noori, Krikar / Khishe, Mohammad / Hashim Ibrahim, Hawkar / Farid Hama Ali, Hunar / Nariman Abdulhamid, Sazan (2021): Presenting the best prediction model of water inflow into drill and blast tunnels among several machine learning techniques. In: Automation in Construction, v. 127 (Juli 2021).

    https://doi.org/10.1016/j.autcon.2021.103719

  7. Mahmoodzadeh, Arsalan / Mohammadi, Mokhtar / Nariman Abdulhamid, Sazan / Hashim Ibrahim, Hawkar / Farid Hama Ali, Hunar / Ghafoor Salim, Sirwan (2021): Dynamic reduction of time and cost uncertainties in tunneling projects. In: Tunnelling and Underground Space Technology, v. 109 (März 2021).

    https://doi.org/10.1016/j.tust.2020.103774

  8. Mahmoodzadeh, Arsalan / Mohammadi, Mokhtar / Hashim Ibrahim, Hawkar / Gharrib Noori, Krikar M. / Nariman Abdulhamid, Sazan / Farid Hama Ali, Hunar (2021): Forecasting sidewall displacement of underground caverns using machine learning techniques. In: Automation in Construction, v. 123 (März 2021).

    https://doi.org/10.1016/j.autcon.2020.103530

  9. Mahmoodzadeh, Arsalan / Mohammadi, Mokhtar / Daraei, Ako / Farid Hama Ali, Hunar / Kameran Al-Salihi, Nawzad / Mohammed Dler Omer, Rebaz (2020): Forecasting maximum surface settlement caused by urban tunneling. In: Automation in Construction, v. 120 (Dezember 2020).

    https://doi.org/10.1016/j.autcon.2020.103375

  10. Mahmoodzadeh, Arsalan / Mohammadi, Mokhtar / Daraei, Ako / Faraj, Rabar H. / Mohammed Dler Omer, Rebaz / Sherwani, Aryan Far H. (2020): Decision-making in tunneling using artificial intelligence tools. In: Tunnelling and Underground Space Technology, v. 103 (September 2020).

    https://doi.org/10.1016/j.tust.2020.103514

  11. Mahmoodzadeh, Arsalan / Mohammadi, Mokhtar / Daraei, Ako / Rashid, Tarik A. / Sherwani, Aryan Far H. / Faraj, Rabar H. / Darwesh, Aso M. (2019): Updating ground conditions and time-cost scatter-gram in tunnels during excavation. In: Automation in Construction, v. 105 (September 2019).

    https://doi.org/10.1016/j.autcon.2019.04.017

Eine Veröffentlichung suchen...

Nur verfügbar mit
Mein Structurae

Volltext
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine