0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Pengyong Miao ORCID

Die folgende Bibliografie enthält alle in dieser Datenbank indizierten Veröffentlichungen, die mit diesem Namen als Autor, Herausgeber oder anderweitig Beitragenden verbunden sind.

  1. Kampai, Chatcharit / Chindasiriphan, Pattharaphon / Jongvivatsakul, Pitcha / Miao, Pengyong / Tangchirapat, Weerachart (2024): Durability properties of high-strength concrete with high-volume bottom ash as a substitute for cement and fine aggregate. In: Construction and Building Materials, v. 457 (Dezember 2024).

    https://doi.org/10.1016/j.conbuildmat.2024.139401

  2. Miao, Pengyong / Zhou, Chunjuan / Wu, Yanru / Hu, Wenbo / Luo, Da / Ma, Shengchi / Wang, Wenrui / Srimahachota, Teeranai (2025): Enhancing bridge performance assessment with a hybrid attention-based long short_term memory and hidden Markov model using sparse inspection data. In: Structures, v. 71 (Januar 2025).

    https://doi.org/10.1016/j.istruc.2024.107995

  3. Cui, Jiaming / Xing, Guohua / Miao, Pengyong / Zhang, Yifan / Chang, Zhaoqun / Khan, Arslan Qayyum (2024): Flexural behavior of RC beams strengthened with BFRP bars and CFRP U-jackets: Experimental and numerical analysis. In: Journal of Building Engineering, v. 97 (November 2024).

    https://doi.org/10.1016/j.jobe.2024.110932

  4. Miao, Pengyong / Srimahachota, Teeranai / Wu, Yanru / Ma, Shengchi / Zhou, Chunjuan (2024): Information fusion-based maintenance strategies selection for coastal concrete bridges using recycled fishing nets. In: Structures, v. 63 (Mai 2024).

    https://doi.org/10.1016/j.istruc.2024.106456

  5. Qiao, Lei / Miao, Pengyong / Xing, Guohua / Luo, Xiaobao / Ma, Jun / Farooq, Muhammad Aboubakar (2023): Interpretable machine learning model for predicting freeze-thaw damage of dune sand and fiber reinforced concrete. In: Case Studies in Construction Materials, v. 19 (Dezember 2023).

    https://doi.org/10.1016/j.cscm.2023.e02453

  6. Xing, Guohua / Luo, Xiaobao / Miao, Pengyong / Qiao, Lei / Yu, Xiaoguang / Qin, Yongjun (2023): Proposed Mix Design Method for Dune Sand Concrete Using Close Packing Model and Mortar Film Thickness Theory. In: Journal of Materials in Civil Engineering (ASCE), v. 35, n. 11 (November 2023).

    https://doi.org/10.1061/jmcee7.mteng-16142

  7. Xing, Guohua / Xu, Yangchen / Huang, Jiao / Lu, Yongjian / Miao, Pengyong / Chindasiriphan, Pattharaphon / Jongvivatsakul, Pitcha / Ma, Kaize (2023): Research on the mechanical properties of steel fibers reinforced carbon nanotubes concrete. In: Construction and Building Materials, v. 392 (August 2023).

    https://doi.org/10.1016/j.conbuildmat.2023.131880

  8. Miao, Pengyong / Xing, Guohua / Ma, Shengchi / Srimahachota, Teeranai (2023): Deep Learning–Based Inspection Data Mining and Derived Information Fusion for Enhanced Bridge Deterioration Assessment. In: Journal of Bridge Engineering (ASCE), v. 28, n. 8 (August 2023).

    https://doi.org/10.1061/jbenf2.beeng-6053

  9. Luo, Xiaobao / Xing, Guohua / Qiao, Lei / Miao, Pengyong / Yu, Xiaoguang / Ma, Kaize (2023): Multi-objective optimization of the mix proportion for dune sand concrete based on response surface methodology. In: Construction and Building Materials, v. 366 (Februar 2023).

    https://doi.org/10.1016/j.conbuildmat.2022.129928

  10. Miao, Pengyong / Yokota, Hiroshi (2024): Comparison of Markov chain and recurrent neural network in predicting bridge deterioration considering various factors. In: Structure and Infrastructure Engineering, v. 20, n. 2 (Juni 2024).

    https://doi.org/10.1080/15732479.2022.2087691

  11. Miao, Pengyong / Srimahachota, Teeranai (2021): Cost-effective system for detection and quantification of concrete surface cracks by combination of convolutional neural network and image processing techniques. In: Construction and Building Materials, v. 293 (Juli 2021).

    https://doi.org/10.1016/j.conbuildmat.2021.123549

  12. Miao, Pengyong / Yokota, Hiroshi / Zhang, Yafen (2023): Deterioration prediction of existing concrete bridges using a LSTM recurrent neural network. In: Structure and Infrastructure Engineering, v. 19, n. 4 (Juli 2023).

    https://doi.org/10.1080/15732479.2021.1951778

  13. Miao, Pengyong (2021): Prediction-Based Maintenance of Existing Bridges Using Neural Network and Sensitivity Analysis. In: Advances in Civil Engineering, v. 2021 (Januar 2021).

    https://doi.org/10.1155/2021/4598337

  14. Miao, Pengyong / Yokota, Hiroshi / Zhang, Yafen (2022): Extracting procedures of key data from a structural maintenance database. In: Structure and Infrastructure Engineering, v. 18, n. 2 (Juni 2022).

    https://doi.org/10.1080/15732479.2020.1838561

Eine Veröffentlichung suchen...

Nur verfügbar mit
Mein Structurae

Volltext
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine