0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Hai-Van Thi Mai

Die folgende Bibliografie enthält alle in dieser Datenbank indizierten Veröffentlichungen, die mit diesem Namen als Autor, Herausgeber oder anderweitig Beitragenden verbunden sind.

  1. Hoang, Huong-Giang Thi / Mai, Hai-Van Thi / Nguyen, Hoang Long / Ly, Hai-Bang (2024): Application of extreme gradient boosting in predicting the viscoelastic characteristics of graphene oxide modified asphalt at medium and high temperatures. In: Frontiers of Structural and Civil Engineering, v. 18, n. 6 (Juni 2024).

    https://doi.org/10.1007/s11709-024-1025-y

  2. Phung, Ba Nhan / Le, Thanh-Hai / Mai, Hai-Van Thi / Nguyen, Thuy-Anh / Ly, Hai-Bang (2023): Advancing basalt fiber asphalt concrete design: A novel approach using gradient boosting and metaheuristic algorithms. In: Case Studies in Construction Materials, v. 19 (Dezember 2023).

    https://doi.org/10.1016/j.cscm.2023.e02528

  3. Mai, Hai-Van Thi / Nguyen, May Huu / Trinh, Son Hoang / Ly, Hai-Bang (2023): Optimization of machine learning models for predicting the compressive strength of fiber-reinforced self-compacting concrete. In: Frontiers of Structural and Civil Engineering, v. 17, n. 2 (Februar 2023).

    https://doi.org/10.1007/s11709-022-0901-6

  4. Mai, Hai-Van Thi / Nguyen, May Huu / Trinh, Son Hoang / Ly, Hai-Bang (2023): Toward improved prediction of recycled brick aggregate concrete compressive strength by designing ensemble machine learning models. In: Construction and Building Materials, v. 369 (März 2023).

    https://doi.org/10.1016/j.conbuildmat.2023.130613

  5. Mai, Hai-Van Thi / Nguyen, May Huu / Ly, Hai-Bang (2023): Development of machine learning methods to predict the compressive strength of fiber-reinforced self-compacting concrete and sensitivity analysis. In: Construction and Building Materials, v. 367 (Februar 2023).

    https://doi.org/10.1016/j.conbuildmat.2023.130339

  6. Ly, Hai-Bang / Nguyen, Thuy-Anh / Mai, Hai-Van Thi / Tran, Van Quan (2021): Development of deep neural network model to predict the compressive strength of rubber concrete. In: Construction and Building Materials, v. 301 (September 2021).

    https://doi.org/10.1016/j.conbuildmat.2021.124081

  7. Mai, Hai-Van Thi / Nguyen, Thuy-Anh / Ly, Hai-Bang / Tran, Van Quan (2021): Prediction Compressive Strength of Concrete Containing GGBFS using Random Forest Model. In: Advances in Civil Engineering, v. 2021 (Januar 2021).

    https://doi.org/10.1155/2021/6671448

Eine Veröffentlichung suchen...

Nur verfügbar mit
Mein Structurae

Volltext
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine