0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Alireza Mahmoudian

Die folgende Bibliografie enthält alle in dieser Datenbank indizierten Veröffentlichungen, die mit diesem Namen als Autor, Herausgeber oder anderweitig Beitragenden verbunden sind.

  1. Mahmoudian, Alireza / Bypour, Maryam / Kontoni, Denise-Penelope N.: Tree-based machine learning models for predicting the bond strength in reinforced recycled aggregate concrete. In: Asian Journal of Civil Engineering.

    https://doi.org/10.1007/s42107-024-01153-2

  2. Bypour, Maryam / Mahmoudian, Alireza / Tajik, Nima / Mohammadzadeh Taleshi, Mostafa / Mirghaderi, Seyed Rasoul / Yekrangnia, Mohammad: Shear capacity assessment of perforated steel plate shear wall based on the combination of verified finite element analysis, machine learning, and gene expression programming. In: Asian Journal of Civil Engineering.

    https://doi.org/10.1007/s42107-024-01115-8

  3. Mohammadzadeh Taleshi, Mostafa / Tajik, Nima / Mahmoudian, Alireza / Yekrangnia, Mohammad (2024): Prediction of pull-out behavior of timber glued-in glass fiber reinforced polymer and steel rods under various environmental conditions based on ANN and GEP models. In: Case Studies in Construction Materials, v. 20 (Juli 2024).

    https://doi.org/10.1016/j.cscm.2023.e02842

  4. Mahmoudian, Alireza / Tajik, Nima / Mohammadzadeh Taleshi, Mostafa / Shakiba, Milad / Yekrangnia, Mohammad (2023): Ensemble machine learning-based approach with genetic algorithm optimization for predicting bond strength and failure mode in concrete-GFRP mat anchorage interface. In: Structures, v. 57 (November 2023).

    https://doi.org/10.1016/j.istruc.2023.105173

  5. Tajik, Nima / Mahmoudian, Alireza / Mohammadzadeh Taleshi, Mostafa / Yekrangnia, Mohammad (2023): Explainable XGBoost machine learning model for prediction of ultimate load and free end slip of GFRP rod glued-in timber joints through a pull-out test under various harsh environmental conditions. In: Asian Journal of Civil Engineering, v. 25, n. 1 (Juli 2023).

    https://doi.org/10.1007/s42107-023-00764-5

Eine Veröffentlichung suchen...

Nur verfügbar mit
Mein Structurae

Volltext
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine