0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Die folgende Bibliografie enthält alle in dieser Datenbank indizierten Veröffentlichungen, die mit diesem Namen als Autor, Herausgeber oder anderweitig Beitragenden verbunden sind.

  1. Risbeck, Michael J. / Cohen, Alexander E. / Douglas, Jonathan D. / Jiang, Zhanhong / Fanone, Carlo / Bowes, Karen / Doughty, Jim / Turnbull, Martin / DiBerardinis, Louis / Lee, Young M. / Bazant, Martin Z. (2023): Data-driven control of airborne infection risk and energy use in buildings. In: Building and Environment, v. 245 (November 2023).

    https://doi.org/10.1016/j.buildenv.2023.110893

  2. Jiang, Zhanhong / Risbeck, Michael J. / Kulandai Samy, Santle Camilas / Zhang, Chenlu / Cyrus, Saman / Lee, Young M. (2023): A timeseries supervised learning framework for fault prediction in chiller systems. In: Energy and Buildings, v. 285 (April 2023).

    https://doi.org/10.1016/j.enbuild.2023.112876

  3. Risbeck, Michael J. / Bazant, Martin Z. / Jiang, Zhanhong / Lee, Young M. / Drees, Kirk H. / Douglas, Jonathan D. (2021): Modeling and multiobjective optimization of indoor airborne disease transmission risk and associated energy consumption for building HVAC systems. In: Energy and Buildings, v. 253 (Dezember 2021).

    https://doi.org/10.1016/j.enbuild.2021.111497

  4. Risbeck, Michael J. / Bazant, Martin Z. / Jiang, Zhanhong / Lee, Young M. / Drees, Kirk H. / Douglas, Jonathan D. (2021): Quantifying the Tradeoff Between Energy Consumption and the Risk of Airborne Disease Transmission for Building HVAC Systems. In: Science and Technology for the Built Environment, v. 28, n. 2 (Dezember 2021).

    https://doi.org/10.1080/23744731.2021.1984171

  5. Jiang, Zhanhong / Risbeck, Michael J. / Ramamurti, Vish / Murugesan, Sugumar / Amores, Jaume / Zhang, Chenlu / Lee, Young M. / Drees, Kirk H. (2021): Building HVAC control with reinforcement learning for reduction of energy cost and demand charge. In: Energy and Buildings, v. 239 (Mai 2021).

    https://doi.org/10.1016/j.enbuild.2021.110833

  6. Chae, Young Tae / Horesh, Raya / Hwang, Youngdeok / Lee, Young M. (2016): Artificial neural network model for forecasting sub-hourly electricity usage in commercial buildings. In: Energy and Buildings, v. 111 (Januar 2016).

    https://doi.org/10.1016/j.enbuild.2015.11.045

Eine Veröffentlichung suchen...

Nur verfügbar mit
Mein Structurae

Volltext
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine