0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Abhilash Gogineni

Die folgende Bibliografie enthält alle in dieser Datenbank indizierten Veröffentlichungen, die mit diesem Namen als Autor, Herausgeber oder anderweitig Beitragenden verbunden sind.

  1. Kumar, Pramod / Gogineni, Abhilash / Upadhyay, Rajnikant (2024): Mechanical performance of fiber-reinforced concrete incorporating rice husk ash and recycled aggregates. In: Journal of Building Pathology and Rehabilitation, v. 9, n. 2 (29 Mai 2024).

    https://doi.org/10.1007/s41024-024-00500-9

  2. Kumar, Pramod / Gogineni, Abhilash / Kumar, Amit / Modi, Prakhar: A Comparative Analysis of Machine Learning Algorithms for Predicting Fundamental Periods in Reinforced Concrete Frame Buildings. In: Iranian Journal of Science and Technology, Transactions of Civil Engineering.

    https://doi.org/10.1007/s40996-024-01560-0

  3. Paswan, Rajesh Kumar / Gogineni, Abhilash / Sharma, Sanjay / Kumar, Pramod (2024): Predicting split tensile strength in Portland and geopolymer concretes using machine learning algorithms: a comparative study. In: Journal of Building Pathology and Rehabilitation, v. 9, n. 2 (29 Mai 2024).

    https://doi.org/10.1007/s41024-024-00485-5

  4. Gogineni, Abhilash / Rout, M. K. Diptikanta / Shubham, Kumar (2023): Prediction of compressive strength of glass fiber-reinforced self-compacting concrete interpretable by machine learning algorithms. In: Asian Journal of Civil Engineering, v. 25, n. 2 (Oktober 2023).

    https://doi.org/10.1007/s42107-023-00891-z

  5. Gogineni, Abhilash / Rout, M. K. Diptikanta / Shubham, Kumar (2023): Evaluating machine learning algorithms for predicting compressive strength of concrete with mineral admixture using long short-term memory (LSTM) Technique. In: Asian Journal of Civil Engineering, v. 25, n. 2 (Oktober 2023).

    https://doi.org/10.1007/s42107-023-00885-x

  6. Gogineni, Abhilash / Panday, Indra Kumar / Kumar, Pramod / Paswan, Rajesh Kr. (2023): Predictive modelling of concrete compressive strength incorporating GGBS and alkali using a machine-learning approach. In: Asian Journal of Civil Engineering, v. 25, n. 1 (Juli 2023).

    https://doi.org/10.1007/s42107-023-00805-z

  7. Gogineni, Abhilash / Panday, Indra Kumar / Kumar, Pramod / Paswan, Rajesh Kr. (2023): Predicting compressive strength of concrete with fly ash and admixture using XGBoost: a comparative study of machine learning algorithms. In: Asian Journal of Civil Engineering, v. 25, n. 1 (Juli 2023).

    https://doi.org/10.1007/s42107-023-00804-0

Eine Veröffentlichung suchen...

Nur verfügbar mit
Mein Structurae

Volltext
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine