0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Die folgende Bibliografie enthält alle in dieser Datenbank indizierten Veröffentlichungen, die mit diesem Namen als Autor, Herausgeber oder anderweitig Beitragenden verbunden sind.

  1. Singh, Shubhendu Vikram / Ghani, Sufyan (2024): A smarter approach to liquefaction risk: harnessing dynamic cone penetration test data and machine learning for safer infrastructure. In: Frontiers in Built Environment, v. 10 (Februar 2024).

    https://doi.org/10.3389/fbuil.2024.1495472

  2. Kumari, Sunita / Ghani, Sufyan / Kumar, Amrendra (2024): Smart modeling of soil-foundation interaction using coupled mechanisms: a numerical framework for liquefaction risk mitigation. In: Frontiers in Built Environment, v. 10 (Februar 2024).

    https://doi.org/10.3389/fbuil.2024.1495499

  3. Mustafa, Rashid / Suman, Shashikant / Kumar, Ankit / Ranjan, Ravi / Kumar, Prince / Ghani, Sufyan (2024): Probabilistic Analysis of Pile Foundation in Cohesive Soil. In: Journal of The Institution of Engineers (India): Series A, v. 105, n. 1 (Februar 2024).

    https://doi.org/10.1007/s40030-024-00785-6

  4. Gupta, Megha / Prakash, Satya / Ghani, Sufyan (2024): Enhancing predictive accuracy: a comprehensive study of optimized machine learning models for ultimate load-carrying capacity prediction in SCFST columns. In: Asian Journal of Civil Engineering, v. 25, n. 4 (Februar 2024).

    https://doi.org/10.1007/s42107-023-00964-z

  5. Kumar, Nishant / Prakash, Satya / Ghani, Sufyan / Gupta, Megha / Saharan, Sunil (2024): Data-driven machine learning approaches for predicting permeability and corrosion risk in hybrid concrete incorporating blast furnace slag and fly ash. In: Asian Journal of Civil Engineering, v. 25, n. 4 (Februar 2024).

    https://doi.org/10.1007/s42107-023-00977-8

  6. Gupta, Megha / Prakash, Satya / Ghani, Sufyan / Kumar, Nishant / Saharan, Sunil (2024): Enhancing bond performance in SRC structures: a computational approach using ensemble learning techniques and sequential analysis. In: Asian Journal of Civil Engineering, v. 25, n. 4 (Februar 2024).

    https://doi.org/10.1007/s42107-023-00982-x

  7. Thapa, Ishwor / Kumar, Nishant / Ghani, Sufyan / Kumar, Sunil / Gupta, Megha (2024): Applications of bentonite in plastic concrete: a comprehensive study on enhancing workability and predicting compressive strength using hybridized AI models. In: Asian Journal of Civil Engineering, v. 25, n. 4 (Februar 2024).

    https://doi.org/10.1007/s42107-023-00966-x

  8. Shrestha, Niraj / Gupta, Megha / Ghani, Sufyan / Kushwaha, Sunayana (2024): Enhancing seismic vulnerability assessment: a neural network effort for efficient prediction of multi-storey reinforced concrete building displacement. In: Asian Journal of Civil Engineering, v. 25, n. 3 (Januar 2024).

    https://doi.org/10.1007/s42107-023-00949-y

  9. Ghani, Sufyan / Kumar, Nishant / Gupta, Megha / Saharan, Sunil (2024): Machine learning approaches for real-time prediction of compressive strength in self-compacting concrete. In: Asian Journal of Civil Engineering, v. 25, n. 3 (Januar 2024).

    https://doi.org/10.1007/s42107-023-00942-5

  10. Ghani, Sufyan / Sapkota, Sanjog Chhetri / Singh, Raushan Kumar / Bardhan, Abidhan / Asteris, Panagiotis G. (2024): Modelling and validation of liquefaction potential index of fine-grained soils using ensemble learning paradigms. In: Soil Dynamics and Earthquake Engineering, v. 177 (Februar 2024).

    https://doi.org/10.1016/j.soildyn.2023.108399

  11. Ghani, Sufyan / Kumari, Sunita / Choudhary, Anil Kumar (2024): Geocell Mattress Reinforcement for Bottom Ash: A Comprehensive Study of Load-Settlement Characteristics. In: Iranian Journal of Science and Technology, Transactions of Civil Engineering, v. 48, n. 2 (Januar 2024).

    https://doi.org/10.1007/s40996-023-01205-8

  12. Ghani, Sufyan / Kumari, Sunita (2021): Probabilistic Study of Liquefaction Response of Fine-Grained Soil Using Multi-Linear Regression Model. In: Journal of The Institution of Engineers (India): Series A, v. 102, n. 3 (12 Juli 2021).

    https://doi.org/10.1007/s40030-021-00555-8

Eine Veröffentlichung suchen...

Nur verfügbar mit
Mein Structurae

Volltext
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine