0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Thermo-mechanical Characterization of Insulating Bio-plasters Containing Recycled Volcanic Pyroclasts

Author(s):



Medium: journal article
Language(s): English
Published in: The Open Civil Engineering Journal, , n. 1, v. 14
Page(s): 66-77
DOI: 10.2174/1874149502014010066
Abstract:

Aim:

The research proposes the reuse of volcanic wastes in the production of lightened and insulating bio-plasters.

Introduction:

The goal is the production of a novel sustainable construction material that reduces the environmental impact.

Methods:

Four mixtures were designed. The recycled Volcanic Ash was used in combination with two bio-compatible binders; basically Natural Hydraulic Lime (NHL) or calcium hydroxide blended with a commercial Portland cement (CH-CEM). To improve thermal properties, CH-CEM mixtures were treated with an Air Entraining Agent (AEA) in two different percentages and a breathable resin (R). The main physical, mechanical and thermal properties were experimentally determined.

Results:

The results of such analysis indicate that the mixture NHL, realized using hydraulic lime as a binder, do not satisfy the threshold of the water absorption coefficient, exceeding the limit established by UNI EN 998-1 standard.

Conclusion:

On the contrary, one of the mixtures CH-CEM, containing both AEA and R, is suitable for use as lightweight plastering mortar and also satisfies the requirements for insulating mortars.

Copyright: © 2020 Loredana Contrafatto et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10424890
  • Published on:
    11/06/2020
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine