0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Study on Time Factors in the Smoke Control Process of Highway Tunnel Fires

Author(s):
ORCID


Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2021
Page(s): 1-14
DOI: 10.1155/2021/6670559
Abstract:

Fire is the most deadly risk during tunnel operation. Early rapid response and a reasonable smoke control plan are very important to evaluate tunnel fire performance. In order to study the relevant time factors for smoke management in a highway tunnel, firstly, the logical sequence and time of the fire alarm system (FAS) startup are investigated and analyzed. Then, according to the one-dimensional fluid mechanics model, the time rule of adjusting the airflow field in the tunnel from the normal operation stage to the emergency ventilation state is analyzed theoretically. Finally, the abovementioned theoretical formulas are verified through the employment of model experiments. The analysis shows that the time that passes from the start of the fire to when the exhaust fan is activated is close to 3 minutes. The time required to form a stable critical wind speed, however, is close to 7 minutes, which is longer than the 5 minutes it takes for the fire to reach its maximum temperature. Due to inertia, it takes about 0.5 to 2 minutes for the air velocity in tunnels of different lengths to drop from the traffic piston wind speed to the critical wind speed. If reverse smoke extraction is required, however, the duration is between 3 and 8 minutes. The conclusion is of guiding significance for the preparation of the emergency linkage control scheme for tunnels, as well as for the setting of initial boundary conditions for CFD fire simulations.

Copyright: © Guoping Zheng et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10646738
  • Published on:
    10/01/2022
  • Last updated on:
    17/02/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine