0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Sound Insulation of Façade Element with Triple IGU

Author(s): ORCID


ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 8, v. 12
Page(s): 1239
DOI: 10.3390/buildings12081239
Abstract:

Sound insulation design for structural glazed façade is an important task in environmental noise control, as increased continuously repeated noise is a significant factor impacting on people’s well-being and is associated with a negative impact on their health. For façades, in addition to sound insulation, requirements for safe use and high energy efficiency are also usually raised, which partly determine the composition of the glazing: triple insulating glass unit (IGU) with inner safety laminated glass sheet. Therefore, the aim of the research was to investigate the structural sealed façade structure with triple IGU and to determine the effect of the thickness of ordinary and laminated glasses, their position in the IGU, the thickness of the gas cavities, and the mass of the structural frame on the sound insulation level of structural glazing. Experimental measurements of the sound insulation index of the investigated façade elements with IGU of various constructions were performed in an acoustic reverberation chamber according to standard procedures. The result of the study indicated that the use of the second laminated glass in a triple IGU is inefficient, the highest sound insulation indicators are achieved by increasing the thicknesses of the external glass sheet and the gas cavity; increasing the mass of the frame also has only little effect on the sound insulation of the structural glazing.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10692645
  • Published on:
    23/09/2022
  • Last updated on:
    10/11/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine