0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Parametric Evaluation of Simultaneous Effects of Damaged Zone Parameters and Rock Strength Properties on GRC

Author(s): ORCID
ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2021
Page(s): 1-13
DOI: 10.1155/2021/2237918
Abstract:

The convergence-confinement method via the ground reaction curve (GRC) is used as the common practice of tunnel design which demands accurate determination of the stress state and material strength behavior in different zones around the tunnel section. Besides, formation of the excavation/blast-induced damaged zone (EDZ/BDZ) adds more complexity to the problem due to variation of elasticity modulus of the rock mass in this zone. As a result, advanced numerical methods via finite element/difference commercial packages or user-coded, semi-numerical techniques are required to develop the GRC, which demands a high degree of proficiency and knowledge of computational plasticity and geomechanics. In this study, a new, simple, and accurate method is proposed for prediction of GRC of circular tunnels constructed in the damaged, elastoplastic rock masses obeying softening in the plastic zone. The effects of deterioration caused by the drilling/blast in the EDZ were taken into account by assuming a reduced and varying Young’s modulus using the disturbance factor, in the form of Hoek–Brown failure criterion and the Geological Strength Index (GSI). Besides, effects of intermediate principal stress and the exponential decaying dilation parameter are taken into account thanks to adoption of the unified strength criterion (USC) as the material strength criteria. To do so, genetic algorithm (GA) via the method of evolutionary polynomial regression (EPR) is used to find a relationship between a number of 19 affecting parameters on the GRC as the input, and the internal support pressure as the target of prediction. Verification analysis was performed to verify the validity of the results using field measurements data as well as other advanced numerical studies found in the literature. Lastly, variation of the support pressure with simultaneous changes in the affecting input parameters was investigated using multivariable parametric study.

Copyright: © 2021 Ali Ghorbani et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10628284
  • Published on:
    05/09/2021
  • Last updated on:
    17/02/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine