0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Outdoor Microclimate in Courtyard Buildings: Impact of Building Perimeter Configuration and Tree Density

Author(s): ORCID
ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 11, v. 13
Page(s): 2687
DOI: 10.3390/buildings13112687
Abstract:

As the effects of climate change and urbanisation intensify, liveability and comfort in outdoor spaces decrease. Because of large spaces exposed to solar radiation and low crossing of airflows, courtyard buildings are extremely vulnerable in this regard. However, there are significant gaps in the literature on outdoor comfort in courtyards, especially regarding the effect of border configuration (including gap position and features), as well that of tree density. The study proposes a methodology—to be used during preliminary design—to compare the effect of alternative scenarios for courtyard buildings on outdoor microclimate, varying both the building perimeter configuration and courtyard vegetation layout. A matrix is set to combine the two variables and select relevant scenarios, which are then simulated in ENVI-met focusing on air temperature, wind speed and physiological equivalent temperature (PET). A case study in Bologna, Italy (humid subtropical climate) is presented as an example of the implementation. The resulting outdoor microclimate maps and frequency diagrams are compared and discussed. It emerges that both variables have a role in outdoor comfort: while gap configuration affects air temperature more (up to a difference of 1 °C), tree density impacts PET by up to 2 °C difference. The methodology can be replicated in several other contexts to support the optimisation of courtyard building design from the early stages.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10744410
  • Published on:
    28/10/2023
  • Last updated on:
    07/02/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine