0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Optimized Preparation of Porous Coal Gangue-Based Geopolymer and Quantitative Analysis of Pore Structure

Author(s):


Medium: journal article
Language(s): English
Published in: Buildings, , n. 12, v. 12
Page(s): 2079
DOI: 10.3390/buildings12122079
Abstract:

The purpose of study is to optimize the preparation of porous coal gangue-based geopolymer and quantitatively analyze its pore structure to establish the relationship between pore structure and mechanical properties. Porous coal gangue-based geopolymers were prepared by using coal gangue as the raw material, Na2SiO3 and NaOH as activators, H2O2 as the foaming agent and carboxymethylcellulose sodium (CMC) as the surfactant. Then response surface methodology (RSM) was used to study effects of liquid-to-solid ratio, CMC content, H2O2 content and curing temperature on compressive strength. Finally, pore number, porosity, pore size distribution and pore structure parameters were analyzed by self-developed image analysis algorithm. RSM results demonstrate that H2O2 content has the greatest effect on mechanical strength, followed by liquid-to-solid ratio, curing temperature and CMC content. Quantitative analysis of pore structure indicate that with the increase in H2O2 content, porosity could increase and pore size and pore shape could become more regular, but mechanical properties sharply deteriorate.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10700236
  • Published on:
    11/12/2022
  • Last updated on:
    15/02/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine