0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Investigation of Indoor Asymmetric Thermal Radiation in Tibet Plateau: Case Study of a Typical Office Building

Author(s): ORCID

Medium: journal article
Language(s): English
Published in: Buildings, , n. 2, v. 12
Page(s): 129
DOI: 10.3390/buildings12020129
Abstract:

The unique climate in cold plateaus leads to long and cold winters, which result in the characteristics and creation of an indoor thermal environment different from that of plain areas. However, there is a lack of detailed research on and evaluation of indoor temperature distributions. This study took an office building in Lhasa as an example to study the indoor non-uniform temperature distributions with radiator and solar radiation. The indoor and outdoor thermal environment parameters were tested. Next, a numerical model was established and verified. On a typical winter weather day, although the average indoor air temperature and radiation temperature in Lhasa are higher than those in Beijing (both are cold areas), the temperature in both is lower than comfortable levels. The indoor vertical air temperature differences are below 3 °C, with a 5% dissatisfaction most of the time. Solar radiation and radiators seriously affect the uniformity of the indoor thermal environment. The radiation asymmetry in Lhasa is significant, and the maximum radiation temperature asymmetry can reach 8.73 °C. In addition, the setting of north-facing windows should be avoided as far as possible in Tibetan areas. Suitable design and evaluation standards should pay attention to the obvious phenomenon of uneven indoor temperature distribution.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

Geographic Locations

  • About this
    data sheet
  • Reference-ID
    10657646
  • Published on:
    17/02/2022
  • Last updated on:
    01/06/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine