0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

In Situ Experimental Investigation of Slim Curtain Wall Spandrel Integrated with Vacuum Insulation Panel

Author(s): ORCID

ORCID
ORCID

Medium: journal article
Language(s): English
Published in: Buildings, , n. 2, v. 12
Page(s): 199
DOI: 10.3390/buildings12020199
Abstract:

Almost every major city’s skyline is known for high-rise iconic buildings with some level of curtain wall system (CWS) installed. Although complex, a CWS can be designed for energy efficiency by integrating insulated spandrel components in space-constrained areas, such as slabs/plenums. The main aim of this study was to experimentally examine the thermal performance of an optimized curtain wall spandrel system integrated with vacuum insulation panel (VIP) as spandrel insulation. The study is based on robust experimental evaluations, augmented with appropriate numerical computations. The main study is constituted of six parts: (1) evaluation of VIP specifications and thermal properties; (2) analysis of VIP spandrel configuration, fabrication, and installation in a test building facility; (3) thermal bridge characterization of VIP spandrels; (4) monitoring and assessment of VIP durability within the spandrel cavities; (5) thermal performance analysis; and (6) assessment of related limitations and challenges, along with some further reflections. In all, 22 VIPs (each of size 600 mm²) were used. The effective thermal conductivity of VIPs ranged from 5.1–5.4 (10−3 W/mK) and the average value for initial inner pressure was approximately 4.3–5.9 mbar. Three VIP spandrel cases were fabricated and tested. The results proved that the Case 3 VIP spandrel configuration (composed of a double-layer VIP) was the most improved alternative for integrating VIPs.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10657716
  • Published on:
    17/02/2022
  • Last updated on:
    01/06/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine