0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Finite Element Analysis of Vertical and Horizontal Drainage Structures under Vacuum Combined Surcharge Preloading

Author(s):




ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2021
Page(s): 1-11
DOI: 10.1155/2021/9448436
Abstract:

Combined vacuum and surcharge preloading has gradually been widely used because of its advantages of low cost, green environmental protection, and good treatment effect. The conventional prefabricated vertical drain presents obvious defects in vacuum preloading treatment, such as obvious silting, serious bending of the drainage board, large attenuation of vacuum degree of drainage board along the depth, long construction period, and so on, which affect the final reinforcement effect. In this paper, the MIDAS finite element simulation of combined vacuum and surcharge preloading of prefabricated vertical drains (PVDs) and prefabricated horizontal drains (PHDs) is established through the comparative experiment of the engineering field. The comparative experimental study is carried out from the aspects of the vertical settlement, horizontal displacement, and pore water pressure. The results show that under combined vacuum and surcharge preloading, the consolidation effect of soft soil with PHDs is better than that with PVDs. When PHDs are used, the vertical settlement increases by 7.2% compared with PVDs; the horizontal displacement is larger; and the pore water pressure dissipates faster. This is because when the PHDs are adopted, the consolidation direction of the soil is consistent with the direction of the vacuum suction, which is mainly caused by vertical settlement. With the consolidation, the spacing between PHDs is gradually shortened, and the drainage distance is reduced, which can effectively reduce the consolidation time and improve the reinforcement effect of the soil. In addition, the PHDs can move downward uniformly with the soil during the consolidation process and have almost no bending deformation, which makes the vacuum transfer more uniform and effective.

Copyright: © Daqing Wang et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10638217
  • Published on:
    30/11/2021
  • Last updated on:
    17/02/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine