0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Experimental Study on Main Physical Parameters Controlling Shear Strength of Unsaturated Loess

Author(s):



Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2021
Page(s): 1-11
DOI: 10.1155/2021/6652210
Abstract:

It is particularly important to study the strength of unsaturated loess, and its accurate determination is crucial to the stability analysis of soil slope and foundation and calculation of earth pressure. In order to reveal the control mechanism of physical parameters on the shear strength of unsaturated loess, the intact and remolded loess were used as the research object; sandy silt, quartz flour, and quartz sand were used as contrast; the systematic direct shear tests of unsaturated loess, sandy silt, and quartz sand under different conditions of water content, dry density, and clay content were carried out. The results show that the cohesion, internal friction angle, and shear strength of unsaturated loess piecewise functionally decrease with the increase of water content, its shear strength increases linearly with the increase of dry density, and its internal friction angle shows an upward quadratic function relation with the increase of clay content. The law results of comparing sandy silt, quartz flour, and quartz sand with loess considering water content and dry density are the same; therefore, the equation of shear strength of unsaturated loess is proposed for practical engineering reference, and by the first derivative analysis of the equation, it is feasible to determine the control proportion of the three parameters on the shear strength of unsaturated loess. A stage-like difference between the three control proportions is observed, depending on the combination variations of water content and clay content.

Copyright: © Wen-tong Tian et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10541167
  • Published on:
    09/01/2021
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine