0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Evaluation of Expanded Metal Mesh Applied on Building Facades with Regard to Daylight and Energy Consumption: A Case Study of an Office Building in Taiwan

Author(s): ORCID


Medium: journal article
Language(s): English
Published in: Buildings, , n. 8, v. 12
Page(s): 1187
DOI: 10.3390/buildings12081187
Abstract:

Recently, expanded metal mesh has been used on the facades of many buildings in Taiwan. Therefore, in this study, we evaluated the impact of expanded metal mesh on natural lighting and energy consumption in office buildings. First, the compatibility of EnergyPlus and DIVA simulation software with expanded metal mesh was verified using field measurements. The results show a high correlation between simulation and measurement, except for some periods of direct sunlight. Then, we evaluated the effects of window-to-wall ratio (WWR), glass, and expanded metal mesh on energy consumption and lighting. The results show that WWR has a significant influence on both lighting and energy consumption. The greater the WWR, the greater the energy saving potential of the expanded metal mesh and glass. If the SHGC of the glass is lower, the potential of the expanded metal mesh to save air conditioning energy consumption is smaller, and, as a result, the expanded metal mesh may increase the total energy consumption. Of the 36 simulation cases performed, three cases met the LEED lighting standard. The case with minimum energy consumption is achieved when SHGC = 50%, using laminated clear glass and expanded metal mesh with a 21% perforated ratio.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

Geographic Locations

  • About this
    data sheet
  • Reference-ID
    10688417
  • Published on:
    13/08/2022
  • Last updated on:
    10/11/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine