0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Effects of Openings and Axial Load Ratio on the Lateral Capacity of Steel-Fiber-Reinforced Concrete Shear Walls

Author(s): ORCID
ORCID
ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 11, v. 12
Page(s): 2032
DOI: 10.3390/buildings12112032
Abstract:

Shear walls are commonly adopted as main structural members to resist vertical and lateral forces, thanks to their high load capacity and high lateral stiffness. However, their lateral capacity can be impaired in the presence of openings, which can reduce their lateral load capacity and stiffness. A possible solution is to cast shear walls using steel-fiber-reinforced concrete (SFRC), which effectively improves the deformation capacity of shear walls. However, few studies deal with the performance of such SFRC shear walls in the presence of openings. Moreover, the effect of different axial load ratios (ALR) is still not fully known. To study these essential parameters, a detailed Finite Element model has been implemented in ABAQUS. Having validated its accuracy against experimental tests on four SFRC shear walls, with and without openings, it has been subsequently used in a parametric study to analyze the effects of different ALRs, of different opening configurations, and of different reinforcement ratios. It is shown that door openings have a more detrimental effect on the lateral load capacity than window openings and that higher ALR values switch the prevailing failure mechanism from flexural to shear, thus reducing both ductility and deformation capacity.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10699946
  • Published on:
    10/12/2022
  • Last updated on:
    10/05/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine