0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Data-Driven Compressive Strength Prediction of Fly Ash Concrete Using Ensemble Learner Algorithms

Author(s): ORCID
ORCID
ORCID

Medium: journal article
Language(s): English
Published in: Buildings, , n. 2, v. 12
Page(s): 132
DOI: 10.3390/buildings12020132
Abstract:

Concrete is one of the most popular materials for building all types of structures, and it has a wide range of applications in the construction industry. Cement production and use have a significant environmental impact due to the emission of different gases. The use of fly ash concrete (FAC) is crucial in eliminating this defect. However, varied features of cementitious composites exist, and understanding their mechanical characteristics is critical for safety. On the other hand, for forecasting the mechanical characteristics of concrete, machine learning approaches are extensively employed algorithms. The goal of this work is to compare ensemble deep neural network models, i.e., the super learner algorithm, simple averaging, weighted averaging, integrated stacking, as well as separate stacking ensemble models, and super learner models, in order to develop an accurate approach for estimating the compressive strength of FAC and reducing the high variance of the predictive models. Separate stacking with the random forest meta-learner received the most accurate predictions (97.6%) with the highest coefficient of determination and the lowest mean square error and variance.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10657640
  • Published on:
    17/02/2022
  • Last updated on:
    01/06/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine