0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Combined Effects of Sulfate and Chloride Attack on Steel Reinforced Mortar under Drying–Immersion Cycles

Author(s):


ORCID
ORCID


ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 8, v. 12
Page(s): 1252
DOI: 10.3390/buildings12081252
Abstract:

In this study, X-ray microcomputed tomography (XCT) and nanoindentation techniques were used to evaluate the synergistic action between sulfate and chloride ingress under cyclic drying–immersion conditions on steel-reinforced mortars. Three salt solutions, namely 3% NaCl (Sc), 5% Na2SO4 (Ss), and 5% Na2SO4 + 3% NaCl (Scs), were used and 24 drying–immersion cycles were applied. The results showed that the chloride caused more severe corrosion on steel reinforcement than the sulfate while under the influence of Scs, and the presence of sulfate suppressed the steel corrosion caused by chloride. In terms the damage to the mortar cover, after 24 drying–immersion cycles, the sulfate caused the most severe damage (volume loss of approximately 7.1%) while the chloride resulted in the least damage (volume loss of approximately 2.6%). By comparing Ss and Scs, it was also found that chloride suppressed the sulfate attack by reducing the damage to the mortar cover (volume loss of approximately 6.3% for Scs). Moreover, the degradation of mortar specimens was found to be layer-dependent, as was the distribution of micro-mechanics. Regarding the micro-mechanics, the specimens of the three solutions performed differently in terms of the aforementioned properties, depending on which underlying mechanism was analyzed. This research could allow for a more accurate assessment of the factors influencing building structures in a typical aggressive marine environment.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10692711
  • Published on:
    23/09/2022
  • Last updated on:
    10/11/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine