Structural Engineering Documents

Use of Timber in Tall Multi-Storey Buildings

International Association for Bridge and Structural Engineering (IABSE)

About the Authors:

Dr. Ian Smith is Lifetime Professor Emeritus of Structural Engineering at the University of New Brunswick in Canada, where he leads a research group in hybrid construction. He holds Doctor of Philosophy and Doctor of Science Degrees from London South Bank University in the United Kingdom.

Dr. Andrea Frangi is Professor for Structural Engineering at the Department of Civil, Environmental and Geomatic Engineering at ETH Zurich, where he leads the research group of Timber Structures. He received his diploma in civil engineering and his doctoral degree from ETH Zurich.

With Contributions From:

G.C. Foliente, R.H. Leicester, S. Gagnon, M.A.H. Mohammad, C. Ni, M. Popovski, A. Asiz, A. Ceccotti, A. Polastri, S. Rivest, B. Kasal, D. Kruse, E. Serrano, J. Vessby, J. Bonomo, H. Professner.

Structural Engineering Documents

13

Use of Timber in Tall Multi-Storey Buildings

International Association for Bridge and Structural Engineering (IABSE)

Copyright © 2014 by International Association for Bridge and Structural Engineering

All rights reserved. No part of this book may be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the publisher.

ISBN 978-3-85748-132-1 DOI: https://doi.org/10.2749/sed013

Publisher: IABSE c/o ETH Zürich CH-8093 Zürich, Switzerland

Phone:	Int. + 41-44-633 2647
Fax:	Int. + 41-44-633 1241
E-mail:	secretariat@iabse.org
Web:	www.iabse.org

Preface

Much has been written in the last few decades about the relative merits of alternative materials for building construction. As part of such efforts, this Structural Engineering Document (SED) provides guidance to engineers on how to properly design multi-storey buildings that incorporate timber and timber-based products as superstructure elements. The scope encompasses traditional systems for buildings up to 10 storeys made from conventional timber products and innovative systems that employ modern timber-based composites, as well as emerging possibilities for using timber elements in very tall buildings.

Poor building performance is usually accompanied by a failure to integrate design across all aspects of a project; or a failure to link design concepts with the realities of local construction and maintenance practices. For example, if timber elements are not properly protected from wetting (i.e. more than occasionally wetted at rates that exceed ambient drying rates), they are unlikely to be durable. However, if they are protected adequately, timber elements are likely to retain their initial properties for centuries. This document emphasises attainment of Total Performance Goals on a cradle to grave basis, taking account of structural and non-structural considerations. In the contemporary parlance, structural design decisions must support attainment of Total Performance Goals from cradle to grave. Even though the lifespan of most buildings are indeterminate at the time of their conception, their design and construction must address issues like capability of the fabric to retain integrity up to and beyond the likely lifespan and eventual dismantling.

The intended audience for this SED is structural engineering practitioners, construction professionals, academic researchers, code drafting bodies, and students. However it is hoped that there will be ancillary audiences amongst architects, property developers, town planners, and governmental policy makers.

Ian Smith Andrea Frangi

Table of Contents

1	Int	oduction	1
	1.1	Historical use of timber for construction	1
	1.2	Modern renaissance of timber as a construction material	5
	1.3	Other chapters	6
2	Str	uctural Design Issues	9
	2.1	Introduction	9
	2.2	Design practices and assumptions	11
		2.2.1 Load combinations, load factors, and resistance factors	12
		2.2.2 Achieving an elastic response and allowance of damage	13
		2.2.2.1 Factors to consider	13
		2.2.2.2 Recommended design practices	15
		2.2.3 Analysis methods	18
	2.3	Effect of superstructure shape and height	18
	2.4	Importance of horizontal diaphragms	20
	2.5	Acceptable risk levels and avoidance of disproportionate damage	21
		2.5.1 Risk	21
		2.5.2 Mitigating damage potential	21
		Podium and other constructed systems with articulated dynamic responses	23
	2.7	Additional comments	24
3	Fire	e Design Concepts	25
	3.1.	Introduction	25
	3.2.	Fire action	26
	3.3.	Fire safety objectives and strategy	27
	3.4.	Fire resistance of structural timber elements	28
	3.5.	Design model for the verification of the separating function	30
	3.6.	Fire design concept for tall timber buildings	36
		3.6.1 Main differences between mid-rise and tall buildings with regard to fire safety	38
		3.6.2 Is it still possible to design a tall building using timber as structural material?	38
	3.7.	Example of tall building project	39
	3.8.	Experimental studies	40
		3.8.1 Fire performance of timber structures under natural fire conditions	40

		3.8.2 Results of sprinklered fire tests	41
		3.8.3 Results of non-sprinklered fire tests	41
	3.9.	Additional comments	44
4	Du	rability Design Concepts	45
	4.1	Introduction	45
	4.2	State-of-the-art	46
	4.3	Attack mechanisms	48
		4.3.1 Mould	48
		4.3.2 Decay	48
		4.3.3 Termites	50
		4.3.4 Corrosion	50
	4.4	Design strategies	51
		4.4.1 Non-structural elements	51
		4.4.2 Non-critical structural elements	52
		4.4.3 Critical structural elements	52
	4.5		53
		4.5.1 Australian approach	53
	1.0	4.5.2 Example calculation	54
	4.6	Additional comments	55
		Acknowledgements	56
5	Tin	ber Frameworks with Rigid Diaphragms: Special Considerations	57
	5.1	Introduction	57
		Useful lessons from low-rise timber construction (circa less than 20 m tall)	58
		Modern renaissance tall timber frame systems (circa 20-80 m tall)	61
		Effective connection methods	64
	5.5	Additional comments	69
		Acknowledgements	69
6		el or Reinforced Concrete Frameworks with Timber Diaphragms: Special	
	Coi	nsiderations	71
	6.1	Introduction	71
	6.2	Massive timber diaphragms for composite hybrid systems	72
	6.3	Twenty-four-storey case studies	72
		6.3.1 Scope and methods	72
		6.3.2 Case study results	76
		6.3.2.1 Structural steel framework systems	76
		6.3.2.2 RC framework systems	78
		General implications of using CLT slabs	81
	6.5	Additional comments	82
		Acknowledgements	83
7	Pla	tform Construction Using Timber Plates: Special Considerations	85
	7.1	Introduction	85
	7.2	CLT as structural material	86
		7.2.1 General characteristics	86
		7.2.2 Typical design properties	87
	7.3	Platform construction concept	88
	7.4	Connection methods	89
	7.5	Structural analysis and design	92

		7.5.1 General aspects	92
		7.5.1.1 Basis of analysis and design	92
		7.5.1.2 Load paths and robustness	92
		7.5.1.3 Design of floors	94
		7.5.1.4 Design of walls	95
		7.5.1.5 Design of connections	97
		7.5.2 Expected performance during seismic events	98
		7.5.3 Design manuals	100
	7.6	Example of seismic design practices	100
		7.6.1 Background	100
		7.6.2 Seven-storey case study	101
	7.7	Additional comments	106
		Acknowledgements	107
8	Exa	ample Project 1: Six-Storey Hybrid Building in Quebec City, Canada	109
	8.1	Background	109
	8.2	Superstructure system	110
		8.2.1 Description and construction	110
		8.2.2 Glulam framework and diaphragms	112
		8.2.3 Timber connection methods	114
	8.3	Structural Design	116
		8.3.1 General aspects	116
		8.3.2 Project specific considerations	117
	0 /	8.3.3 Analysis method and design results	118 119
	8.4 8.5	Fire design Measurement of the building response	119
	0.5	8.5.1 Differential movements	120
		8.5.2 Vibration response	120
	8.6	Additional comments	121
	0.0	Acknowledgements	122
9 Examp		ample Project 2: Fire Design of a Seven-Storey Hybrid Building in Berlin,	
	Ger	rmany	125
	9.1	Background	125
	9.2	Description of the building superstructure	125
	9.3	Fire compartmentalization of the building	127
	9.4	Detailed aspects of the design	129
		9.4.1 Floor slabs	129
		9.4.2 Critical element junctions	131
		9.4.3 Gravity load system	132
		9.4.4 Cavity fires and transmission of hot gases	133
	9.5	Additional comments	133
		Acknowledgements	134
10	Exa	ample Project 3: Limnologen—Block of Four Eight-Storey Residential	
		ldings in Växjö, Sweden	135
		Background	135
		Architectural design	136
	10.3	Structural design	137
		10.3.1 Wall elements	137
		10.3.2 Floor elements	138

	10.3.3 Lateral load design	139		
	10.4 Fire design	139		
	10.5 Acoustical design	140		
	10.6 Protection of elements and construction of buildings	140		
	10.6.1 Moisture and weather protection	140		
	10.6.2 Construction of buildings	140		
	10.7 Research studies	142		
	10.7.1 Measurements of vertical settlement	143		
	10.7.2 Time study on installation of load-bearing elements	145		
	10.8 Additional comments	146		
	Acknowledgements	146		
11	Example Project 4: Björkbacken, a 10-storey hybrid building in Stockholm,			
	Sweden	147		
	11.1 Background	147		
	11.2 Superstructure concept	148		
	11.3 Fire compartmentalization	150		
	11.4 Vertical load resisting system	150		
	11.5 Lateral load resisting system	151		
	11.6 Construction of building	151		
	11.7 Additional comments	153		
	Acknowledgements	153		
12	Looking to the Future	155		
	12.1 Likely limits on heights of multi-storey superstructure systems	155		
	12.1.1 Lightweight timber plate assemblies	156		
	12.1.2 Massive timber plate assemblies	158		
	12.1.3 Heavyweight timber-framed assemblies	159		
	12.1.4 Hybrid/composite assemblies	161		
	12.2 Example of proposed systems: LifeCycle Tower concept	163		
	12.3 Refocusing design codes	167		
	12.3.1 General requirements	167		
	12.3.2 Timber structural design	168		
	12.3.3 Timber fire design	169		
	12.4 Final comments	169		
	Acknowledgements	169		

13 References

Chapter

1

Introduction

Summary: Since the dawn of civilization, timber has been a primary material for achieving great structural engineering feats. Yet during the late 19th century and most of the 20th century it lost currency as a preferred material for construction of large and tall multi-storey building superstructures. This Structural Engineering Document (SED) addresses a reawakening of interest in timber and timber-based products as primary construction materials for relatively tall, multi-storey buildings. Emphasis throughout is on the holistic addressing of various issues related to performance-based design of completed systems, reflecting that major gaps in know-how relate to design concepts rather than technical information about timber as a material. Special consideration is given to structural form, fire vulnerability, and durability aspects for attaining desired building performance over lifespans that can be centuries long. This chapter discusses the historical use of timber as a high-performance construction material and lays the groundwork for detailed discussion of modern practices and possibilities in other chapters.

1.1 Historical use of timber for construction

Evidence has been found that in Neolithic China the pre-human species "Peking Man" constructed "nest residences" from branches and thatch. Earth was compacted around thick timber struts, and it is speculated that this was to prevent them from catching fire [1]. Although the practices were crude, this arguably means that timber engineering (structural use of timber) and fire engineering (control of fire risk) were born between 300 000 and 1 million years ago and predate humans. Similarly, carpentry skills that are the basis of modern ability to interconnect timber members have ancient origins. Stone Age people created load-bearing building systems that interconnected timbers using mortise-and-tenon joints that are the direct forerunner of traditional Chinese architecture [1].

From antiquity onwards, urban utilization of construction materials has been shaped by their fire performance when assembled into buildings. City-wide or district-wide conflagrations were the impetus for prescriptive building regulations that date back to the Roman Empire [2]. More modern catastrophes like The Great Fire of London in 1666 and The Boston Fire in 1872 have reinforced fear of urban fires, and many specific building code restrictions created between 17th and 19th centuries are recognizably alive today in some jurisdictions (e.g. not allowing timber buildings to have more than four storeys above ground). Historical building regulations

Structural Engineering Documents

Objective:

To provide in-depth information to practicing stuctural engineers in reports of high scientific and technical standards on a wide range of structural engineering topics.

SED Editorial Board:

J. Sobrino, Spain (Chair); H. Subbarao, India (Vice Chair); M. Bakhoum, Egypt; C. Bob, Romania; M. Braestrup, Denmark; M.G. Bruschi, USA; R. Geier, Austria; N.P. Hoej, Switzerland; S. Kite, Hong Kong; D. Laefer, Ireland; R. Mor, Israel; H.H. (Bert) Snijder, The Netherlands; R. von Woelfel, Germany.

Topics:

The International Association for Bridge and Structural Engineering (IABSE) operates on a worldwide basis, with interests of all type of structures, in all materials. Its members represent structural engineers, employed in design, academe, construction, regulation and renewal. IABSE organises conferences and publishes the guarterly journal Structural Engineering International (SEI), as well as reports and monographs, including the SED series, and presents annual awards for achievements in structural engineering. With a membership of some 4,000 individuals in more than 100 countries, IABSE is the international organisation for structural engineering.

Readership:

Practicing structural engineers, teachers, researchers and students at a university level, as well as representatives of owners, operators and builders.

Publisher:

The International Association for Bridge and Structural Engineering (IABSE) was founded as a non-profit scientific association in 1929. Today it has more than 3900 members in over 90 countries. IABSE's mission is to promote the exchange of knowledge and to advance the practice of structural engineering worldwide. IABSE organizes conferences and publishes the quarterly journal Structural Engineering International, as well as conference reports and other monographs, including the SED series. IABSE also presents annual awards for achievements in structural engineering.

For further Information:

IABSE c/o ETH Zürich CH-8093 Zürich, Switzerland Phone: Int. + 41-44-633 2647 Fax: Int. + 41-44-633 1241 E-mail: secretariat@iabse.org Web: www.iabse.org

Use of Timber in Tall Multi-Storey Buildings

Since the dawn of civilization, timber has been a primary material for achieving great structural engineering feats. Yet during the late 19th century and most of the 20th century it lost currency as a preferred material for construction of large and tall multi-storey building superstructures. This Structural Engineering Document (SED) addresses a reawakening of interest in timber and timber-based products as primary construction materials for relatively tall, multi-storey buildings. Emphasis throughout is on holistically addressing various aspects of performance of complete systems, reflecting that major gaps in knowhow relate to design concepts rather than technical information about timber as a material. Special consideration is given to structural form, fire vulnerability, and durability aspects for attaining desired building performance over lifespans that can be centuries long.

