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Preface

The repair and strengthening of existing structures is an urgent need worldwide, especially in
earthquake prone areas. Recent earthquakes have demonstrated that despite the continuous devel-
opments of novel materials and new strengthening techniques, the majority of the existing struc-
tures are still unprotected and at high seismic risk. Most of the existing structures need to be
structurally upgraded either because they have been damaged during previous earthquakes or
because they have been designed without or with old seismic code provisions. The repair and
strengthening framework is a complex process, and there are often barriers in the preventative
upgrade of the existing structures related to the cost of the applications and the limited expertise
of the engineers.

The selection of the appropriate method each time is dependent on a large number of parameters
such as the local environmental and geotechnical conditions, the type of the structure, the material
characteristics and the condition of the existing structural elements, the availability of materials
and technologies, the purpose of the structure, and the seismicity of the area. Therefore, the con-
servation and strengthening of an existing structure is an open-ended project. The engineers need
to consider various options thoroughly, and the selection of the appropriate strategy is a crucial
parameter for the success of these applications.

Another challenging part is the evaluation of the condition of the existing structures. In most
cases, the lack of detailed drawings and documentations of the existing old structures, the limited
accessibility to “hidden” structural elements, and the uncertainties in the evaluation of the mate-
rial properties of the existing structures encompasses a high degree of uncertainty. At the same
time, the code provisions in this field are quite limited and have been recently developed or are
still under development. There are still techniques that are not sufficiently covered by the existing
regulations. The design process is, in most cases, not strictly specified by the codes adding an
extra layer of complexity to the engineers who do not have the required experience and can only
hardly find limited examples of previous applications in the literature.

This document contains a collection of nine case studies from six different countries with differ-
ent seismicities (i.e. Austria, Greece, Italy, Mexico, Nepal, and New Zealand). Various types of
structures have been selected with different structural peculiarities such as buildings used for dif-
ferent purposes (i.e. school buildings, town hall, 30-storey office tower), a bridge, and a wharf.



Most of the examined structures are reinforced concrete structures, while there is also an applica-
tion on a Masonry building.

This document is the second in a series of documents to be published by IABSE in the very
important field of “Maintaining and Upgrading the Structural Performance of Existing Struc-
tures.” The first document entitled “IABSE SED 12: Case Studies of Rehabilitation, Repair, Ret-
rofitting, and Strengthening of Structures,” was published in 2011, edited by Professor Mourad
M. Bakhoum and Dr Juan A. Sobrino. The topic examined is quite broad, and the repair or
strengthening techniques is highly dependent on the type of the existing structures and the mate-
rials used. Therefore, the development of a potential future collection of case studies focused on
the repair and strengthening of additional types of structures, and especially steel construction
and bridges would be desirable.

This document follows a consistent format for all the sections of every chapter as proposed by
Professor MouradM. Bakhoum for IABSE SED 12. For each of the examined studies of this doc-
ument, the local conditions are described followed by the main deficiencies that are addressed.
The methods used for the assessment of the in situ conditions are also presented and alternative
strategies for the repair and strengthening are examined followed by the structural analysis before
and after the structural upgrade. Details about the construction procedures are also presented.

The main aim of this collection is to present a number of different approaches applied to a wide
range of structures with different characteristics and demands acting as a practical guide for the
main repair and strengthening approaches used worldwide.

The Editor would like to express his appreciation and sincere thanks to the reviewers Professor
Shunichi Nakamura and Professor Charis Gantes for their thorough and valuable comments
and suggestions.

Finally, the Editor would like to especially thank the IABSE Bulleting Board members, in partic-
ular Professor Mourad M. Bakhoum, for his invitation to develop a second version of a Case
Study document on this field following IABSE SED 12 and the Chair of the Bulletin Board,
Dr Harsha Subbarao, for his continuous encouragement and support during the preparation of
the document.

Dr Andreas Lampropoulos
(Editor)
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Chapter
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Seismic Rehabilitation of a School
Building in Cephalonia, Greece

Christos Giarlelis,1 Evlalia Lamprinou2 and Constantinos Repapis3

1Structural Engineer, Equidas Consulting Engineers
2Structural Engineer, Equidas Consulting Engineers
3Associate Professor, Department of Civil Engineering, University of West Attica

Abstract
The 2014 earthquake sequence in Cephalonia, Greece, resulted in a number of structural fail-
ures. In Argostoli, the capital of the island, a school building suffered light damage; however,
the structural assessment following the analysis procedures of the recently published Greek
Code for Structural Interventions, showed that seismic strengthening is required. The structure
was built on the aftermath of the catastrophic 1953 Ionian earthquake sequence based on older
code requirements, which are much outdated, as indicated from the results of both modal
response spectrum analyses and non-linear static analyses. The retrofit aims to increase the very
low structural capacity of the building and as a means for that the use of concrete jackets is
selected. Based on the results of the assessment, it was decided that concrete jackets should
be applied to all columns, while large structural walls running along the transversal direction
were strengthened with single-sided reinforced concrete jacketing. The interventions are limited
by architectural demands and cost considerations. However, analyses of the strengthened struc-
ture show that the interventions improve its seismic behaviour adequately. The detailing of
interventions is thoroughly presented. What makes this case study interesting is the unusual
structural system of the building, which is an ingenious combination of frame elements and
lightly reinforced concrete walls and its behaviour to one of the strongest recent Greek earth-
quakes. The rehabilitation study had to model correctly the structure and propose interventions
that were in agreement with the architectural demands and the cost consideration.

Keywords: Earthquake, Structural assessment, Seismic rehabilitation, Reinforced Concrete,
Strengthening

1.1 Introduction

On 26 January and 3 February, 2014, two strong earthquakes of magnitudes M6.1 and M6.0,
respectively, ruptured the western part of the island of Cephalonia (Fig. 1.1). The epicentre of

1https://doi.org/10.2749/cs002.001
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2

Modification and Strengthening of a
Characteristic Reinforced Concrete
Building in Patras, Greece

Stephanos Dritsos, Professor and Dimitrios Baros, PhD

Department of Civil Engineering, University of Patras, Patras, Greece

Abstract
The design and application of strengthening measures aiming to effectively counter possible
weaknesses related to the extensive architectural modification of a characteristic reinforced con-
crete building is discussed in this chapter. Several balconies were removed as part of the architec-
tural interventions. Externally bonded reinforcement consisting of steel and fibre reinforced
polymer laminates was applied as an “answer” to possible changes in flexural stress of selected
structural elements in the immediate area of the demolitions. A unique anchorage system was also
designed and applied as an answer to the loss of development length of the main reinforcement
bars of selected beams due to the removal of their cantilever parts.

Keywords: flexural strengthening; externally bonded reinforcement, laminates, rebar anchor
plates

2.1 Introduction

The continuous advancement in structural engineering practice, namely structural analysis, design
and construction procedures, as well as the improved understanding and representation of the effects
of earthquakes on structural elements has undeniably led to the increased safety of modern buildings
compared with those designed and built decades ago. However, the latter represent the bulk of the
built environment in major urban areas. The questionable seismic performance of such buildings is
usually the main reason for assessing and, if necessary, strengthening them to comply with the perfor-
mance objectives set out in modern codes for seismic assessment and retrofit of structures.

In most cases, the design and application of a complete system that will effectively upgrade the
performance of an existing structure is a challenging process. It requires knowledge of the respec-
tive code framework, complex numerical modelling and analysis procedures, and, most impor-
tantly, deep understanding of the available structural intervention techniques and their effects
on structural elements. The latter is of major importance when designing and applying a structural
retrofit system as a “counterbalance” to specific weaknesses, which may occur as a result of local

21https://doi.org/10.2749/cs002.021
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3

Seismic Performance Assessment,
Retrofitting, and Loss Estimation
of an Existing Non-Engineered
Building in Nepal

Rakesh Dumaru, PhD Graduate,1 Hugo Rodrigues, Adjunct Professor2 and
Humberto Varum, Full Professor3

1Faculdade de Engenharia da Universidade do Porto, Porto, Portugal
2RISCO, ESTG - Polytechnic Institute of Leiria, Leiria, Portugal
3CONSTRUCT-LESE, Faculdade de Engenharia da Universidade do Porto, Porto, Portugal

Abstract
The non-engineered building built before 2004 remained after Gorkha earthquake although such
structures demonstrate seismic deficient. Therefore, the present study aims to carry out detail seis-
mic performance of such building to investigate as-built seismic performance and its performance
after intervention of retrofit measures. Two in situ tests were performed, which includes Schmidt
hammer test and ambient vibration test. The adaptive pushover analysis and dynamic time history
analyses were performed for as-built and retrofitted building. The retrofit measures increase the
stiffness and maximum base shear capacity of the buildings. In addition, such retrofit measures
improved single storey drift concentration in existing building such that uniform drift profile
can be attained. Furthermore, the probability of exceeding damage states can be significantly
reduced and mainly found to be more effective in minimizing higher damage states, such as par-
tial collapse and collapse states. The maximum expected annual loss occurs between 0.1 g and
0.2 g PGA (Peak Ground Acceleration). It was revealed that the steel braced building was found
to be relatively more effective in enhancing the seismic performance, whereas reinforced concrete
shear wall found more economic feasible retrofit measure for this particular building.

Keywords: non-engineered, retrofit techniques, ambient vibration test, fragility curves, cost–
benefit analysis, sensitivity analysis, risk curve

3.1 Introduction

The reinforced concrete (RC) buildings built before the implementation of any design codes and
guidelines, whose structural sections and reinforcement details resemble only to carry gravity
loads, were classified as non-engineered buildings. In context of Nepal, it includes RC buildings
built before 2004, after which Nepal Building Code (NBC), that is, NBC 205:19941 guideline
was implemented. It provides ready to use dimensions and detailing for structural elements, but

43https://doi.org/10.2749/cs002.043
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Retrofitting of School Building Located
in Southern Italy

Enzo Martinelli, PhD, Associate Professor,1 Ciro Faella, Full Professor,1

Emidio Nigro, PhD, Full Professor2 and Carmine Lima, PhD, Research Assistant1

1Università degli Studi di Salerno, Fisciano, Italy
2Università degli Studi di Napoli “Federico II”, Napoli, Italy

Abstract
This paper summarizes the main features of the seismic retrofitting project of a school building
located in Montella (AV), Italy. Specifically, it describes the as-built status in terms of structural
organization, member detailing, and existing materials properties. Then, it outlines the main
assumptions and results obtained from seismic analysis, of both as-built and retrofitted structure.
Comments about the construction stage are also reported by describing the main operations put in
place with the aim to realize the shear wall system, which is the main retrofitting intervention, and
some local strengthening measures consisting in steel plating and jacketing of some under-
designed RCmembers. Some emphasis is placed on the realization of micro-piles and extra foun-
dations of the aforementioned shear walls. Besides its specific interest, the reported project may
be intended as representative of a wide class of seismic assessment and retrofitting projects that
have been realized in Italy in the last decade.

Keywords: school building, reinforced concrete frame, shear walls, micro-piles, steel jacketing

4.1 Introduction

A significant share of school buildings have been built during the past decades and are currently
in need for retrofitting. Specifically, according to the “registry” (anagrafe) realized in 2015 by the
Ministry of Education, University and Research (MIUR), the stock of Italian school buildings
consists of about 42 000 constructions, 55% of which have been realized before 1976.1 As it is
well-known, almost all the Italian territory is characterized by medium-to-high seismic hazard2;
Therefore, the intrinsic vulnerability, deriving by the fact that the majority of school buildings
have been designed without the modern principles of earthquake engineering,3,4 leads to signif-
icant values of seismic risk, also because of the exposure of young human lives. More than any
quantitative data and formal statistics, the consequences of the seismic event occurred in 2002

71https://doi.org/10.2749/cs002.071
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Seismic Strengthening of the Majestic
Centre, Wellington, New Zealand

Joe White, PE CPEng MIPENZ CEng MIStructE, Business Manager, Netherlands
(formerly Wellington), Holmes Consulting LP and
Hamish McKenzie, CPEng MIPENZ, Principal – North Island NZ, Holmes Consulting LP

Abstract
The Majestic Centre is a 30-storey office tower in the centre of Wellington, New Zealand. The
structure has a dual lateral system (reinforced concrete (RC) moment frame + shear cores) and
hollow-core floors. The building’s assessed seismic performance was found to be below expected
levels, leading to a strengthening exercise. Over a period of 5 years, the structures performance
was raised to meet current seismic loading requirements, at a cost of €50M.

Keywords: dual system, transfer beam, diaphragm, frame elongation

5.1 Introduction

The Majestic Centre is an iconic landmark in Wellington, the capital city of New Zealand. Con-
structed circa 1991, it is a 30-storey modern office tower and the tallest building in the city. The
building was assessed in 2011 using a performance-based approach and found to have a lower
than expected level of seismic performance. Over a period of 5 years, at a cost of NZ$83.5 million
(€50M), the building has been systematically strengthened, while remaining fully tenanted. The
project has spurred new assessment and strengthening techniques and overcome several major
logistical challenges to reach a successful completion.

The project team comprised Holmes Consulting (Structural Engineers), Tonkin & Taylor
(Geotech Engineers), Fletcher Construction Company (Main Contractor), The Building Intelli-
gence Group (Project Manager), WSP Opus (Architects) and Beca (Peer Reviewer) (Fig. 5.1).

5.1.1 The Building

TheMajestic Centre sits on a sloping site in the centre of the city. The building is 116 m tall, com-
prising a 25-storey tower with a 5-storey podium beneath. The tower dominates the building’s
presence, providing high-grade commercial space for approximately 2700 people. The podium

95https://doi.org/10.2749/cs002.095
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Thorndon Container Wharf: Temporary
Works for Recovery of Container
Operations (New Zealand)

Rob Presland,1 Alistair Boyce2 and Engliang Chin3

1Technical Director, Holmes Consulting LP, Wellington, New Zealand
2Technical Principal – Maritime, WSP-Opus, Christchurch, New Zealand
3Senior Geotechnical Engineer, Tonkin and Taylor, Wellington, New Zealand

Abstract
The Thorndon Container Wharf sustained severe damage in the November 2016 M7.8 Kaikoura
earthquake. Substantial works, of a temporary nature, were required to restore thewharf for container
handling operations. The temporary securing works included gravel columns within the reclamation
fill and restraining and underpinning of the wharf. All of these works were designed and constructed
over a 9-month period to provide a temporary facility for container handling operations for a period
of up to 3 years. The temporary securingworkswere required to secure the container cranes,maintain
support to the wharf structure, and ensure the reclamation behind the wharf had sufficient strength to
support lateral loads imposed by the restraining system. Thiswas to enable container operations to re-
commence and to maintain business continuity, pending action on replacement or reinstatement of
the container wharf. This paper outlines the development of the design of the temporary works to
secure and return to operations a 125- m working length of wharf and reclamation.

Keywords:wharf, seismic damage, assessment, repair, existing reinforced concrete structures, struc-
tural analysis

6.1 Introduction

The Thorndon ContainerWharf (TCW) is a marginal wharf that forms the eastern edge of the Cen-
trePort container terminal operational area in Wellington, New Zealand (Fig. 6.1). The wharf pro-
vides approximately 585 m of berth for vessels for the loading and unloading of containerized
cargo, using two 750-tonne Liebherr ship-to-shore gantry container cranes positioned on the wharf.

The wharf was constructed in stages from the late 1960s by the Wellington Harbour Board. Pre-
cast concrete driven piles, cast in situ reinforced concrete main beams, and precast, prestressed
concrete deck units make up the typical wharf structure. The area behind the wharf was reclaimed
as part of container port expansion works, which included construction of the wharf structure.

127https://doi.org/10.2749/cs002.127
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Christchurch Town Hall Complex:
Post-Earthquake Ground
Improvement, Structural Repair, and
Seismic Retrofit

Gareth Morris,1 Mark Browne,2 Kirsti Murahidy3 and Mike Jacka4

1Structural Engineer, Holmes Consulting, Christchurch, New Zealand
2Structural Engineer, Holmes Consulting, Christchurch, New Zealand
3Geotechnical Engineer, Tonkin and Taylor, Christchurch, New Zealand
4Geotechnical Engineer, Tonkin and Taylor, Christchurch, New Zealand

Abstract
TheChristchurch TownHall (CTH) complex contains six reinforced concrete buildings constructed
circa 1970 in Christchurch, New Zealand (NZ). The complex is used for performing arts and enter-
tainment, with an Auditorium that is internationally recognized for its acoustics. It is listed as a
Grade-1 heritage building due to its cultural and historical significance. Unfortunately, the CTH
foundation system was not originally designed to accommodate liquefaction-induced differential
settlement and lateral spreading effects, as highlighted by the 2010–2011 Canterbury earthquake
sequence. Although the most extreme ground motions exceeded the NZS 1170.5 code-defined
1/2500 year earthquake loads, the CTH structures performed remarkably well for a design that
pre-dated modern seismic codes. Most of the observed structural damage was a result of the differ-
ential ground deformations, rather than in response to inertial forces. The post-earthquake observa-
tions and signs of distress are presented herein. The primary focus of this paper is to describe two
major features of the seismic retrofit project (initiated in 2013) which were required to upgrade
the CTH complex to meet 100% of current NZS 1170.5 seismic loadings. Firstly, the upgrade
required extensive ground improvement and a new reinforce concrete mat slab to mitigate the
impacts future ground deformations. Soil stabilization was provided by a cellular arrangement of
jet-grout columns, a relatively new technique to NZ at the time. The new mat slab (typically 600–
900 mm) was constructed over the stabilized soils. Secondly, upgrading the superstructure had
many constraints that were overcome via a performance-based design approach, using non-linear
time-history analysis. Recognizing the heritage significance, the superstructure “resurrection” as a
modern building was hidden within the original skin minimized disruption of heritage fabric. Ret-
rofit solutions were targeted, which also minimized the overall works. The 2015–2019 construction
phase is briefly discussed within, including jet-grout procedures and sequencing considerations.

Keywords: Christchurch, liquefaction, jet-grout, performance-based, retrofit, soil–structure.
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Chapter
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Strengthening and Modernization
of a Characteristic Masonry Building
in Vienna, Austria

Dimitrios Stefanoudakis1 and Eftychia Apostolidi2

1Civil Engineer, MSc. Dr.techn., Vienna, Austria
2Research Associate, DI MSc, University of Natural Resources and Life Sciences,
Vienna, Austria

Abstract
Historical buildings from the period of Promoterism constructed between 1850 and 1910, called
“Gründezeitgebäude,” represent a main part of the building stock in Vienna. A typical building
from this period is presented, along with the pathology of such buildings. A step-by-step strength-
ening andmodernization strategy is described, including structural analysis data and design of sec-
tions data before and after interventions, along with detailing according to the respective codes.

Keywords: earthquake, strengthening, brick floors, timber floors, historical building, masonry

8.1 Introduction

The city of Vienna is located in a weak earthquake zone with a seismic return period of 475 years.
The strongest earthquake recorded in Austria was in the year 1590 (M 5.75) with an epicentre 30–
40 km outside of Vienna1 and an earthquake in 1972 with the intensity of ~60 % of the aforemen-
tioned earthquake just caused a few damages to the existing buildings. In spite of many wars, but
fortunately just few natural disasters, the city of Vienna still has a good conserved building stock
inside the city centre. This area was inside the city wall, called the “Ring,” which was removed
between 1858 and 1875 and was replaced by the “Ring” avenue. Outside this down town-city
centre area, there are newer buildings, called “Gründerzeit” (“the Founder Epoch”) buildings,
constructed between 1850 and 1910 the age of promoterism. These buildings with typically dec-
orated façades still dominate the townscape of Vienna. They are taller and more slender than the
older mainly baroque buildings. “Gründerzeit”-buildings are clay-brick masonry buildings of 2 to
6 stories with wooden joist floors. The roof floor is mostly a timber floor, and the cellar floor is a
brick arch (Fig. 8.1). There are about 30 000 such buildings in Vienna. The existing buildings
from the “Period of Promoterism” are of high importance for the city as cultural heritage and they
are still used as residential buildings. They are very popular to live in, although they are less com-
fortable and less safe than modern buildings.
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Strengthening andRetrofitting ofMotín
de Oro II Bridge in Mexico

José M. Jara, Titular Professor, Bertha A. Olmos, Titular Professor and
Guillermo Martínez, Titular Professor

Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México

Abstract
This chapter presents the studies conducted to retrofit an existing bridge in a seismic prone area
of Mexico. The Motín de Oro II Bridge was built in the 1970s with a continuous box girder
superstructure and wall-type substructure. From the 1970s to nowadays, the design truck loads
in Mexico have been substantially incremented and many bridges built in that period have
required to be evaluated and, in some cases, rehabilitated and retrofitted. Firstly, the study pre-
sents the results of visual inspections of all parts of the bridge and a description of the prelim-
inary studies conducted to determine the material properties, to evaluate the river flow
characteristics and to calculate the scour depth. Secondly, the chapter discusses the initial struc-
tural analyses of the bridge subjected to the original gravitational and seismic loads and to the
current loads before the intervention. These analyses allow to select the structural elements that
require to be retrofitted and the best strategy to follow. Finally, the study presents results of the
numerical retrofitted model and the experimental assessment of the dynamic properties based on
ambient vibration measurements. Additionally, the scour protection and the general construction
procedure are also described.

Keywords: Ambient vibration measurements, external presstressing tendons, increased live
loads, scour depth, pushover analyses, bridge rehabilitation

9.1 Introduction

México has a road network with more than 16 000 bridges. TheMinistry of Communications and
Transportation has a yearly plan of visual inspections to evaluate bridge pathologies based on a
governmental program called Mexican Bridge System. Most of the bridges are visited at least
once a year to fulfil a survey that quantifies different aspects related to the safety of the structure.
At the end, all variables involved are combined and evaluated with a final number in the range of
1–5. The lowest value means general good state with minor actions required, and the highest
value implies actions that must be immediately attended.
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Recent earthquakes have demonstrated that despite the con- 
tinuous developments of novel materials and new strengthen- 
ing techniques, the majority of the existing structures are still 
unprotected and at high seismic risk. The repair and strength- 
ening framework is a complex process and there are often 
barriers in the preventative upgrade of the existing structures 
related to the cost of the applications and the limited exper- 
tise of the engineers. The engineers need to consider various 
options thoroughly and the selection of the appropriate strategy
is a crucial parameter for the success of these applications. 
The main aim of this collection is to present a number of differ- 
ent approaches applied to a wide range of structures with dif- 
ferent characteristics and demands acting as a practical guide 
for the main repair and strengthening approaches used world- 
wide. This document contains a collection of nine case studies 
from six different countries with different seismicity (i.e. Austria, 
Greece, Italy, Mexico, Nepal and New Zealand). Various 
types of structures have been selected with different structural 
peculiarities such as buildings used for different purposes (i.e. 
school buildings, town hall, 30 storey offi ce tower), a bridge, 
and a wharf. Most of the examined structures are Reinforced 
Concrete structures while there is also an application on a 
Masonry building. For each of the examined studies, the lo-
cal conditions are described followed by the main defi ciencies 
which are addressed. The methods used for the assessment of 
the in-situ conditions also presented and alternative strategies 
for the repair and strengthening are considered.

Case Studies on Conservation and Seismic 
Strengthening/Retrofi tting of Existing Structures
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