Structural Engineering Documents

Sustainable Structural Engineering

John E. Anderson Christian Bucher Bruno Briseghella Xin Ruan Tobia Zordan

International Association for Bridge and Structural Engineering (IABSE)

Structural Engineering Documents

14

Sustainable Structural Engineering

Editors

John E. Anderson Christian Bucher Bruno Briseghella Xin Ruan Tobia Zordan

IABSE Working Commission 7 – Sustainable Engineering

International Association for Bridge and Structural Engineering (IABSE)

Copyright © 2015 by International Association for Bridge and Structural Engineering

All rights reserved. No part of this book may be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the publisher.

ISBN 978-3-85748-141-3 DOI: https://doi.org/10.2749/sed014

Publisher: IABSE c/o ETH Zürich CH-8093 Zürich, Switzerland

Phone:	Int. + 41-44-633 2647
Fax:	Int. + 41-44-633 1241
E-mail:	secretariat@iabse.org
Web:	www.iabse.org

Preface

From resource consumption and water use to waste generation and greenhouse gas emissions, the built environment is critical for a sustainable future. While the challenges of sustainability have been known for decades, urgency of action is driven by the findings of the United Nations Intergovernmental Panel on Climate Change. Consequently, structural engineers face a new design paradigm: safe, economic, reliable, and *sustainable*.

Sustainable development is defined by the Brundtland Report as "development that meets the needs of the present without compromising the ability of future generations to meet their own needs." The three pillars of sustainability—environment, social, and economic—must be taken into account for engineering projects to achieve sustainability. This *Structural Engineering Document* presents the latest research and practical applications of sustainable structural engineering from around the world.

In the opening chapter, Kanda details the role of the structural engineer in sustainable design with a focus on safety. This is followed by Limsuwan's chapter on an integration concept of sustainability engineering. Zordan then outlines a sustainable approach to structural design. Lourenço, Branco, and Coelho illustrate the importance of existing structures in their chapter on cultural heritage and structural systems. Anderson and Yang discuss life-cycle assessment as a crucial analysis tool to evaluate environmental sustainability criteria. Matos, Neves, and Gonçalves subsequently present the importance of asset management for aging infrastructure. Martin and Kirk provide a crucial review of sustainability in bridge design and maintenance. Bucher and Brehm then present structural reassessment for the lifetime extension of structures. The importance of disaster risk reduction as a sustainability strategy is presented by Grundy. Finally, de Brito and Silva review green materials for concrete production.

Sustainability is a broad and complex topic. Through this *Structural Engineering Document* we aim to provide practicing engineers and researchers with insights, tools, and recommendations to advance sustainable structural design.

John E. Anderson, Christian Bucher, Bruno Briseghella, Xin Ruan, and Tobia Zordan August, 2015

Dedication

Paul Grundy (1935–2013)

This book is dedicated to the memory of Professor Paul Grundy – A devoted IABSE member, colleague, and friend.

Table of Contents

1	Safety and Sustainability—the Structural Engineer's Role			
	(Ju	n Kan	da)	1
	1.1	Introd	luction	1
	1.2	Major	elements for architecture	2
	1.3	Enviro	onmental impacts	3
	1.4	Role of	of regulations	4
	1.5	Trans	parency and accountability	5
	1.6	Furthe	er considerations	7
		Refere	ences	7
2	Inte	egratio	on Concept of Sustainable Engineering	
	(Ek	asit L	imsuwan)	9
	2.1	Introd	luction	9
		2.1.1	Sustainable development	9
		2.1.2	Sustainable engineering	10
		2.1.3	Integration concept on sustainability engineering	10
	2.2	Integr	ation concept in the building process	11
		2.2.1	Emerging strategy	11
		2.2.2	Planning and development	12
		2.2.3	Design	13
		2.2.4	Construction	13
		2.2.5	Operation and maintenance	14
	2.3	Imple	mentation solution	14
		2.3.1	Public consciousness	14
		2.3.2	Laws and regulations	15
		2.3.3	Professional practices	16
	2.4	2.4 Examples of implementation solution		17
		2.4.1	Thailand sufficiency economy	17
		2.4.2	PTT sustainable development	18
		2.4.3	SCG sustainable development	20
	2.5	Concl	usion and recommendation	21
		Refere	ences	22

3	A S	A Sustainable Approach to Structural Design			
	(To	bia Zordan)	25		
	3.1	Introduction	25		
	3.2	Ecological footprint and appropriate carrying capacity	26		
	3.3	Some considerations on sustainability in integrated life-cycle structural engineering:			
		conception and uncertainties in design approach	29		
	3.4	Complexity versus complicacy within a sustainable conceptual design	32		
	3.5	Structural art: a ruled freedom	35		
	3.6	Sustainable conceptual design of structures	39		
		3.6.1 Design for structural efficiency	39		
		3.6.2 Choice of a suitable static scheme	39		
		3.6.3 Structural optimization	41		
		3.6.4 Design for durability, minimal maintenance, and life-cycle costs	42		
		3.6.4.1 Integral abutment concept	43		
		3.6.5 Design for value protection	46		
		3.6.5.1 Seismic isolation of existing buildings	48		
	3.7	Conclusion	49		
		References	50		
4	Sus	tainability and Cultural Heritage Buildings			
	(Pa	ulo B. Lourenço, Jorge M. Branco and Ana Coelho)	53		
	4.1	Introduction	53		
	4.2	Definitions	55		
		4.2.1 Cultural heritage conservation specificities	55		
		4.2.2 Rehabilitation and sustainability	57		
	4.3	Traditional materials and sustainability	58		
		4.3.1 Masonry	59		
		4.3.2 Wood	60		
	4.4	Methodology for intervention in heritage structures	61		
		4.4.1 Principles	61		
		4.4.2 Guidelines	62		
	4.5	Application of life-cycle assessment tools to existing buildings	63		
	4.6	Cultural heritage buildings and sustainability	64		
		4.6.1 Environmental impacts	64		
		4.6.2 Economic impacts	65		
		4.6.3 Social impacts	65		
	4.7	Conclusion	66		
		References	66		
5	Me	asuring Sustainability and Life-Cycle Assessment			
	(Jo	hn E. Anderson and Frances Yang)	69		
	5.1	Introduction	69		
	0.11	5.1.1 Sustainability goals	70		
	5.2	Life-cycle assessment	71		
	0.2	5.2.1 Metrics	75		
		5.2.2 Methodology	75		
		5.2.3 Life-cycle inventory databases	76		
		5.2.4 Software tools	, 0 77		
	5.3	Life-cycle assessment case studies of structures	77		
	2.0	5.3.1 Comparing case studies	83		
		5.3.2 Limitations of life-cycle assessment	84		

	5.4	Green design rating systems	84
		5.4.1 Buildings	84
		5.4.2 Infrastructure and bridges	86
		5.4.3 Cities and the urban scale	87
	5.5	Emerging trends	87
	5.6	Conclusion	88
		References	88
6	Ass	set Management	
	(Jos	sé C. Matos, Luís Neves, and Bruno Gonçalves)	93
	6.1	Introduction	93
	6.2	WLC: a tool for asset management	94
	6.3	Whole-life costing: a review	95
	6.4	Costs and condition	96
	6.5	Models and scenarios	100
	6.6	Data acquisition systems and model updating	102
	6.7	Optimization techniques and decision	105
	6.8	Conclusion	107
		References	107
7	Sus	tainability and Bridges	
	(An	ndrew J. Martin and Martin J.D. Kirk)	111
	7.1	Introduction	111
	7.2	Bridges and sustainability	112
	7.3	Aspects of sustainability related to bridges	112
		7.3.1 Environment	113
		7.3.2 Society	116
		7.3.3 Economics	117
	7.4	The life-cylce of a bridge	119
		7.4.1 Inception, feasibility, and option selection	119
		7.4.2 Design and specification	120
		7.4.3 Construction	121
		7.4.4 Operation and maintenance	121
		7.4.5 Assessment and strengthening	122
		7.4.6 Demolition	122
	7.5	Case studies	122
		7.5.1 Case study 1—Capilano River bridge replacement (Canada)	123
		7.5.2 Case study 2—Queensferry Crossing (Scotland, UK)	126
		7.5.3 Case study 3—Bridges for the Queen Elizabeth Olympic Park,	
		London (UK)	128
	7.6	A sustainability checklist for bridges	132
	7.7	Conclusion	132
		Acknowledgements	135
		References	135
		Further reading	137
8	Str	uctural Reassessment for Lifetime Extension	
	(Ch	nristian Bucher and Maik Brehm)	141
	8.1	Introduction	141
	8.2	General philosophy	142
	8.3	Best practice	143

	8.4	Review of methodologies useful for structural reassessment	147
		8.4.1 Model calibration	147
		8.4.2 Optimal sensor placement	147
		8.4.3 Uncertainty quantification and propagation methods	148
		8.4.4 System reliability analysis	148
		8.4.5 Cost-benefit analysis	149
		8.4.6 Structural health monitoring	149
	8.5	Conclusion	149
		References	150
9	Sust	tainability through Disaster Risk Reduction	
-	(Pau	ul Grundy)	153
	91	Introduction	153
	9.2	The triple bottom line	153
	9.3	Acceptable risk	154
	9.4	Basic features of natural hazards leading to disaster	155
		9.4.1 Excessive hazard intensity	155
		9.4.2 Synchronous failure	156
	9.5	Design for disaster risk reduction	157
		9.5.1 Disaster limit state	157
		9.5.2 Reconstruction	160
		9.5.3 Retrofitting	160
	9.6	Obstacles to sustainability in disaster risk	161
		9.6.1 Awareness of risk	161
		9.6.2 Cost of disaster prevention measures	162
	9.7	Conclusion	162
		References	163
10	Gre	en Materials for Concrete Production	
10	(Jor	ge de Brito and Rui V. Silva)	165
	10.1	Introduction	165
	10.1	Background	165
	10.3	How to make concrete more sustainable	168
	10.4	Recycled materials for concrete	169
		10.4.1 Industrial wastes	169
		10.4.2 Construction and demolition wastes	170
		10.4.3 Converting CDW into usable aggregates	172
	10.5	Early age behaviour of structural RAC	174
	10.6	Mechanical behaviour of structural RAC	177
	10.7	Durability behaviour of structural RAC	180
	10.8	Successful case studies using structural RAC	183
	10.9	Concluding remarks	183
		References	186
		Introduction	186
		Industrial wastes	187
		Construction and demolition wastes	190
		Fresh behaviour of RAC	191
		Mechanical behaviour of RAC	193
		Durability behaviour of RAC	194

Author Index

Ana Coelho 53 Andrew J. Martin 111 Bruno Gonçalves 93 Christian Bucher 141 Ekasit Limsuwan 9 Frances Yang 69 John E. Anderson 69 Jorge De Brito 165 Jorge M. Branco 53 José C. Matos 93 Jun Kanda 1 Luís Neves 93 Maik Brehm 141 Martin J.D. Kirk 111 Paul Grundy 153 Paulo B. Lourenço 53 Rui V. Silva 165 Tobia Zordan 25

Structural Engineering Documents

Objective:

To provide in-depth information to practicing stuctural engineers in reports of high scientific and technical standards on a wide range of structural engineering topics.

SED Editorial Board:

J. Sobrino, Spain (Chair); H. Subbarao, India (Vice Chair); M. Bakhoum, Egypt; C. Bob, Romania; M. Braestrup, Denmark; M.G. Bruschi, USA; R. Geier, Austria; N.P. Hoej, Switzerland; S. Kite, Hong Kong; D. Laefer, Ireland; R. Mor, Israel; H.H. (Bert) Snijder, The Netherlands; R. von Woelfel, Germany.

Topics:

The International Association for Bridge and Structural Engineering (IABSE) operates on a worldwide basis, with interests of all type of structures, in all materials. Its members represent structural engineers, employed in design, academe, construction, regulation and renewal. IABSE organises conferences and publishes the quarterly journal *Structural Engineering International (SEI)*, as well as reports and monographs, including the SED series, and presents annual awards for achievements in structural engineering. With a membership of some 4,000 individuals in more than 100 countries, IABSE is the international organisation for structural engineering.

Readership:

Practicing structural engineers, teachers, researchers and students at a university level, as well as representatives of owners, operators and builders.

Publisher:

The International Association for Bridge and Structural Engineering (IABSE) was founded as a non-profit scientific association in 1929. Today it has more than 3900 members in over 90 countries. IABSE's mission is to promote the exchange of knowledge and to advance the practice of structural engineering worldwide. IABSE organizes conferences and publishes the quarterly journal Structural Engineering International, as well as conference reports and other monographs, including the SED series. IABSE also presents annual awards for achievements in structural engineering.

For further Information:

IABSE c/o ETH Zürich CH-8093 Zürich, Switzerland Phone: Int. + 41-44-633 2647 Fax: Int. + 41-44-633 1241 E-mail: secretariat@iabse.org Web: www.iabse.org Sustainability is the defining challenge for engineers in the twenty-first century. In addition to safe, economic, and efficient structures, a new criterion, *sustainable*, must be met. Furthermore, this new design paradigm–addressing social, economic, and environmental aspects–requires prompt action. In particular, mitigation of climate change requires sustainable solutions for new as well as existing structures. Taking from both practice and research, this book provides engineers with applicable, timely, and innovative information on the state-ofthe-art in sustainable structural design.

This *Structural Engineering Document* addresses safety and regulations, integration concepts, and a sustainable approach to structural design. Life-cycle assessment is presented as a critical tool to quantify design options, and the importance of existing structures—in particular cultural heritage structures—is critically reviewed. Consideration is also given to bridge design and maintenance, structural reassessment, and disaster risk reduction. Finally, the importance of environmentally friendly concrete is examined. Consequently, structural engineers are shown to have the technical proficiency, as well as ethical imperative, to lead in designing a sustainable future.

