Structural Engineering Documents

Matthias Haldimann Andreas Luible Mauro Overend

Structural Use of Glass

International Association for Bridge and Structural Engineering Association Internationale des Ponts et Charpentes Internationale Vereinigung für Brückenbau und Hochbau

About the Authors:

Dr Matthias HALDIMANN is director of the project and management consulting department at Emch+Berger AG Bern, Switzerland. He received his doctoral degree from the Swiss Federal Institute of Technology (EPFL), where he investigated the fracture strength, modelling, testing and design of structural glass elements.

Dr Andreas LUIBLE is a senior façade engineer at Josef Gartner Switzerland AG, which is part of the Permasteelisa Group. He received his doctoral degree from the Swiss Federal Institute of Technology (EPFL), where he undertook research on the stability of load carrying glass elements.

Dr Mauro OVEREND is a lecturer in Building Engineering Design at the Department of Engineering, University of Cambridge, United Kingdom and a Fellow of Christ's College, where he leads research in structural glass and façade engineering. He received his doctoral degree from the University of Surrey, United Kingdom, where he carried out research on glass assemblies and the fracture strength of glass.

Structural Engineering Document

10

Matthias Haldimann Andreas Luible Mauro Overend

Structural Use of Glass

International Association for Bridge and Structural EngineeringIABSEAssociation Internationale des Ponts et CharpentesAIPCInternationale Vereinigung für Brückenbau und HochbauIVBH

Copyright © 2008 by International Association for Bridge and Structural Engineering

All rights reserved. No part of this book may be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the publisher.

ISBN 978-3-85748-119-2

Publisher: IABSE-AIPC-IVBH ETH Zürich CH-8093 Zürich, Switzerland

 Phone:
 Int. + 41-44-633 2647

 Fax:
 Int. + 41-44-633 1241

 E-mail:
 secretariat@iabse.org

 Web:
 www.iabse.org

Preface

All common applications of architectural glass may be deemed as 'structural'. A small glass pane in a traditional four-edge supported window frame must withstand self-weight, wind-induced pressures, thermal strains and occasional cleaning loads. Unsurprisingly there are several suitable guidelines and adequate rules of thumb that enable appropriate design of these traditional applications.

Recent architectural trends and technological developments have brought about unprecedented opportunities and major changes in the use of glass in buildings. These include the use of large area glass panels; the use of glass in areas traditionally reserved for other materials such as roofs, floors, staircases and partitions; a vast selection of improved glass products; a wide range of novel support and connection details including bolted glass. The consequence of these exciting applications is that glass is often subjected to onerous actions and complex states of stress. Furthermore the glass may now contribute to the integrity of the overall structure and the consequence of failure is considerably greater, such that the glass has a more 'structural' role than the small glass pane in the traditional four-edge supported window. In such applications the traditional rules of thumb are of little assistance as the simplifying assumptions embedded within them no longer hold true and cannot be extrapolated from the specific glass product and simple boundary conditions for which they were devised.

Structural engineers currently have a bewildering array of glass products and configurations to choose from and a wide range of normal and exceptional loading conditions to consider, but very few unified reference texts for undertaking these tasks. This book attempts to redress this issue by providing an overview of the recent developments in this field thereby providing a basis for the understanding of the structural performance and design of glass in buildings.

The book is primarily for structural engineers and researchers who have an interest in structural glass. It draws on topics from many specialist areas such as manufacturing, materials science, fracture mechanics, computational analysis, reliability and forensic engineering and is therefore also relevant to professionals in this field. The level is appropriate for senior undergraduates, post-graduate students, researchers and practising engineers. The level of interest and the depth of knowledge will vary for instance between the general practising engineer who may be interested in gaining an overview of the general design considerations and specification of glass structures, to the researcher who may be interested in a specific fracture phenomenon in glass. This wide range of interest is accommodated by providing a mix of general and specialist chapters. Furthermore, the text is supplemented by tables of the relevant codes of practice and by an extensive list of references.

The first chapter provides a review of glass production, processing methods and glass products ranging from clear float glass to the more recent developments in switchable glazing. The chapter also provides both a useful listing of glass products as well as the underlying principles that affect the mechanical properties of glass. Chapter 2 provides general guidelines on the analysis and design of glass structures, including advice on actions on glass structures, structural analysis and computational modelling as well as post-breakage behaviour and requirements. Chapter 3 provides an answer to the elusive question 'What is the strength of glass?' by presenting an account of glass fracture mechanisms and formulating useful stochastic failure prediction models for a single flaw and for random surface flaw populations. The chapter also provides an overview of fundamental dynamic fracture mechanics which is useful in glass forensics. Chapter 4 presents a series of quick checks and rules of thumb that are useful for preliminary sizing of structural glass elements. This chapter also reviews the main standards and codes of practice used for the design of structural glass and provides a commentary on the strengths and shortcomings of these standards. Chapter 5 covers the exciting possibilities offered by loading glass in compression and the factors that affect buckling instability in glass. The chapter provides guidelines on the performance and structural design of glass elements that undergo column buckling, lateral torsional buckling and plate buckling. Chapter 6 provides recommendations on how the fracture mechanics formulations presented in the previous chapters may be deployed in practice. This chapter provides guidelines on how to overcome the limitations of laboratory testing and how to obtain statistically relevant and consistent data. Chapter 7 presents a review of connections and support fixings commonly used in glass structures and provides recommendations on good detailing. The chapter also provides useful sizing charts for bolted fixings and reviews the recent developments in enhanced mechanical fixings and adhesive connections. Chapter 8 reviews the current practice and standards used for the design-assisted-by-testing approach, which is particularly relevant for assessing post-breakage and impact performance. This chapter also includes practical advice for undertaking forensic engineering in glass structures.

This book therefore provides a snapshot of the recent developments in the structural use of glass in buildings and draws from the latest developments in practice and research. This was only possible thanks to the contributions from students and colleagues who have kindly donated their work or their time. Their contributions are gratefully acknowledged in the text and the references. The contents of this book have also been greatly enriched by the contributions of several glass experts, who have provided substantial input and advice on specific sections of this book. Their names are listed below and are also shown alongside the headings of the sections they contributed in.

Benjamin BEER	Werner Sobek Stuttgart, Germany
Lucio BLANDINI, Dr.	Werner Sobek Stuttgart, Germany
Mick EEKHOUT, Prof. Dr.	Octatube, Delft, The Netherlands
Christoph HAAS	Ernst Basler + Partner AG, Zürich, Switzerland
Iris MANIATIS, Dr.	University of the German Federal Armed Forces Munich, Germany
Jürgen NEUGEBAUER, Dr.	University of Applied Sciences, FH Joanneum, Graz, Austria
Jens SCHNEIDER, Prof. Dr.	Frankfurt University of Applied Sciences, Germany
Werner SOBEK, Prof. Dr.	Werner Sobek Stuttgart, Germany
Geralt SIEBERT, Prof. Dr.	University of the German Federal Armed Forces Munich, Germany
Ronald VISSER	Octatube, Delft, The Netherlands
Frank WELLERSHOFF, Dr.	Permasteelisa Central Europe GmbH, Würzburg, Germany

Finally a special word of thanks goes to the IABSE Structural Engineering Documents Editorial Board, especially to Geoff Taplin, and to their reviewers Chris Jofeh and Geralt Siebert, who kindly reviewed the drafts of this book and helped to improve it with their valuable feedback.

Berne, Basel and Nottingham/January 2008

Dr. Matthias Haldimann Dr. Andreas Luible Dr. Mauro Overend

Contents

1	Mat	erial		1
	1.1	Produ	ction	1
		1.1.1	Production of flat glass	1
		1.1.2	Production of cast glass and glass profiles	3
		1.1.3	Relevant standards	3
	1.2	Materi	al properties	4
		1.2.1	Composition and chemical properties	4
		1.2.2	Physical properties	6
	1.3	Proces	sing and glass products	9
		1.3.1	Introduction	9
		1.3.2	Tempering of glass	9
		1.3.3	Laminated glass	14
		1.3.4	Insulating glass units (IGU)	15
		1.3.5	Curved glass	16
		1.3.6	Decorative surface modification processes	16
		1.3.7	Functional coatings	18
		1.3.8	Switchable glazing	19
		1.3.9	Other recent glasses	23
		1.3.10	Relevant standards	24
2 General Design Guidelines			Design Guidelines	27
	2.1 The design process		27	
		2.1.1	Particularities of glass structures	27
		2.1.2	Risk analysis	28
		2.1.3	Post-breakage behaviour and robustness	30
	2.2	Action	s on glass structures	31
		2.2.1	Particularities of glass structures	31

		2.2.2	Wind loads	32
		2.2.3	Correlation of wind load and material temperature	33
		2.2.4	Seismic loads and movements	35
		2.2.5	Impact loads	35
		2.2.6	Bomb blast	35
		2.2.7	Internal pressure loads on insulated glass units	38
		2.2.8	Thermal stress	38
		2.2.9	Surface damage	40
	2.3	Struct	ural analysis and modelling	40
		2.3.1	Geometric non-linearity	40
		2.3.2	Finite element analysis	41
		2.3.3	Simplified approaches and aids	42
	2.4	Requi	rements for application	42
		2.4.1	Vertical glazing	43
		2.4.2	Overhead glazing	44
		2.4.3	Accessible glazing	45
		2.4.4	Railings and balustrades	46
3	Fra	cture :	Strength of Glass Elements	49
Ŭ	3.1	Introd	luction	49
	2.1	Ctroco	action and out artical areas arouth	50
	3.2	Stress	Delationship between areal valority and strong intensity	50
		3.4.1 2.2.2	Crack healing, crack growth threshold and hysteresis effect	50
		3.2.2	Influences on the relationship between stress intensity and crack	52
		5.2.5	growth	53
	。 ,	Ouaci	statio fractura machanica	55
	3.3	Quasi-	Strang intensity and fracture toughness	55
		222	Heat-treated glass	57
		333	Inert strength	58
		334	Lifetime of a single flaw	59
		3.3.5	Lifetime of a glass element with a random surface flaw population	62
		3.3.6	Discussion	70
	3.4	Dvnar	nic fracture mechanics	70
	35	Labor	atory testing procedures	74
	0.0	3 5 1	Testing procedures for crack velocity parameters	74
		3.5.2	Testing procedures for strength data	75
	26	Ouont	itativa considerations	76
	3.0	2.6.1		76
		362	Geometry factor	70
		363	Ambient strength and surface condition	78
		364	Residual surface stress due to thermal tempering	81
		0.0.7	Residual surface stress and to thermal tempering	01
4	Cur	rent S	tandards, Guidelines and Design Methods	85
	4.1	Introd	luction	85

	4.2	Rules of thumb		
		4.2.1	Allowable stress based design methods	86
		4.2.2	Recommended span/thickness ratios	87
	4.3	Europe	ean standards and design methods	88
		4.3.1	DELR design method	88
		4.3.2	European draft standard prEN 13474	90
		4.3.3	Shen's design method	92
		4.3.4	Siebert's design method	94
	4.4	North A	American standards and design methods	96
		4.4.1	Glass failure prediction model (GFPM)	96
		4.4.2	American National standard ASIM E 1300	97
	4 -	4.4.3		99
	4.5	Analys	is and comments	102
	4.6	Conclu	sion and Outlook	106
5	Des	ign foi	r Compressive In-plane Loads and Stability Problems	107
	5.1	Introdu	uction	107
	5.2	Paramo	eters having an influence on the buckling behaviour	108
		5.2.1	Glass thickness	109
		5.2.2	Initial deformation	109
		5.2.3	Interlayer material behaviour in laminated glass	109
		5.2.4	Boundary conditions and glass fixings	109
	5.3	Colum	n buckling	110
		5.3.1	Modelling	110
		5.3.2	Load carrying behaviour	112
		5.3.3	Structural design	113
		5.3.4	Intermediate lateral supports	113
		5.3.5		114
	5.4	Lateral		115
		5.4.1	Modelling	115
		5.4.2 5.4.3	Structural design	11/
	E E	Diata h		120
	5.5	5 5 1	Modelling	122
		5.5.2	Load carrying behaviour	125
		5.5.3	Structural design	127
6	Doc	ian Ma	othods for Improved Accuracy and Flovibility	191
U	Des		unitien	101
	0.1	introdi		131
	6.2	Surface	e condition modelling	131
		0.2.1	Bandom surface flaw population model	131
	62	Dogom	mondations for design	102
	0.3	Recom		133

	6.4	Testing6.4.1In6.4.2D6.4.3C	ntroduction	136 136 137 138
	6.5	Overview	w of mathematical relationships	140
7	Glass Connections 1			
	7.1 Introduction			143
	7.2	Mechani7.2.1L7.2.2C7.2.3B	ical fixings	144 144 145 148
	7.3	Gluedc7.3.1G7.3.2S7.3.3R	onnections	152 152 156 160
	7.4	Recent d7.4.17.4.2I1	levelopments and trends ncreasing the post-breakage structural capacity with fabric embeds ncreasing the post-breakage structural capacity with new geome-	164 164
		tı 7.4.3 H	ries	165 166
8	Spe	cial Top	vics	169
	8.1	Design a 8.1.1 In 8.1.2 P 8.1.3 In 8.1.4 T	Assisted by testing	169 169 170 170 172
	8.2	Diagnos 8.2.1 Q 8.2.2 Q	tic interpretation of glass failures	172 174 175
A	Not	ation, A	bbreviations	177
B	Glos	ssary of	Terms	183
С	Stat	istical F	Fundamentals	194
Re	fere	nces		199
In	ndex 211			

This text has been compiled in collaboration with the following experts: *Prof. Dr. Jens Schneider*

1.1 Production

1.1.1 Production of flat glass

Figure 1.1 gives an overview of the most common glass production processes, processing methods and glass products. The main production steps are always similar: melting at 1600-1800 °C, forming at 800-1600 °C and cooling at 100-800 °C.

Figure 1.1: Glass production processes and products overview.

2

General Design Guidelines

2.1 The design process

This text has been compiled in collaboration with the following experts: *Christoph HAAS*

2.1.1 Particularities of glass structures

The overall design procedure for structural glass elements is not unlike other structural materials i.e. it is essentially an iterative process that relies on a combination of rules of thumb, more accurate analytical methods and prototype testing. The use of these three techniques varies throughout the design process. Quick, approximate methods are primarily used at early design stage to test alternative schemes and at a later stage for verifying the more accurate calculations; more accurate methods are employed during detailed design stages; prototype testing is used to verify the design prior to construction.

As with any structure, the designer should establish the fundamental performance requirements before starting any calculations. These requirements include the ultimate limit state that ensures adequate strength to withstand the anticipated actions, namely, material strength, overall structural stability (i. e. the structure is not a mechanism) and elastic stability (i. e. no flexural or lateral torsional buckling). Additional ultimate limit state performance requirements that are particularly relevant to glass deal with fail-safe concepts, ranging from criteria for overall structural robustness to requirements for the post-breakage structural behaviour of individual glass elements. Serviceability limit state requirements normally include limiting deflections and/or vibrations, movement tolerances and aesthetic criteria. It is understood that all the ultimate and serviceability limit states should be satisfied in order to ensure structural adequacy.

The standard elastic design method used with most construction materials is known as the maximum stress approach. In this approach the engineer sizes a structural element by ensuring that the maximum stresses caused by an action do not exceed the strength of a material at any position on that element. Most engineers therefore implement structural design from a few fundamental constants, the strength of the material being one of them.

3

Fracture Strength of Glass Elements

3.1 Introduction

The aim of this chapter is to provide an in-depth understanding of the mechanisms of glass fracture that underpin subsequent chapters and should be used as the basis for structural design of glass.

The mechanical properties of glass stem from the molecular structure discussed in Chapter 1, which unlike most other construction materials, does not consist of a geometrically regular network of crystals, but of an irregular network of silicon and oxygen atoms with alkaline parts in between. The random molecular structure has no slip planes or dislocations to allow macroscopic plastic flow before fracture; consequently, glass is perfectly elastic at normal temperature and exhibits brittle fracture. This inability to yield plastically before fracture means that the fracture strength of glass is very sensitive to stress concentrations. Since surface flaws cause high stress concentrations, accurate characterization of the fracture strength of glass must incorporate the nature and behaviour of such flaws. To this end, Section 3.2 discusses the stress corrosion that causes existing surface flaws to grow slowly in size prior to failure, a phenomenon that is often referred to as 'sub-critical crack growth'. This section is also a prerequisite for subsequent sections.

Section 3.3 introduces quasi-static linear elastic fracture mechanics (LEFM) and provides a mathematical model for determining the fracture strength of glass. This model, called the 'lifetime prediction model', is derived from a mathematical description of a glass element's surface condition and of the growth and fracture of surface flaws through LEFM and probability theory. The equations that are provided in the lifetime prediction model can be used for predictive modelling and structural design. They take sub-critical crack growth, non-homogeneous, time-variant biaxial stress fields, arbitrary geometry and arbitrary stress histories into account. While the lifetime prediction model described herein is more complex than traditional semi-empirical models, it offers significant advantages that are discussed in this section.

4

Current Standards, Guidelines and Design Methods

4.1 Introduction

The increasing use of glass as a load-bearing material has led to the development of a number of national and international design standards, draft standards, technical guidelines and recommendations. The aim of these documents is to arrive at an accurate value of allowable load or stress for an acceptable probability of failure in terms of the geometrical configuration of the glass (i. e. shape and support conditions) and the environmental parameters (loads and ambient conditions) by means of a few simple calculations.

These design methods do not cater for all types of glass configurations, loading, support and surface conditions. Most commonly, they are limited to glass elements of rectangular shape with continuous lateral support and to uniformly distributed out-of-plain loads. An in-depth analysis of the underlying assumptions in Section 4.5 reveals further limitations that the design methods fail to mention.

It is beyond the scope of this document to give an exhaustive overview of *all* national standards and design methods that exist in the field of glass. All the more, because many of them are based on simple theories, ignore geometrical non-linearity and the like. Although these methods are sufficiently accurate for rectangular window glazing with continuous lateral support, they should not be used for structural glass applications or for support and loading conditions that they do not cover. The standards and design methods discussed in the following have been chosen either because they are widely used or because they are of particular interest for structural glass design.

4.2 Rules of thumb

This text has been compiled in collaboration with the following experts: Benjamin BEER

Accurate analysis and design methods are generally unattractive for manual computation and it is unrealistic to expect the engineer to perform laborious calculations throughout

5

Design for Compressive In-plane Loads and Stability Problems

5.1 Introduction

The compressive strength of glass is significantly higher than its tensile strength [80, 169]. Experimental studies [242] demonstrated that it is possible to utilize the enormous compressive in-plane load carrying capacity of glass panels. This opens up new applications of glass panels in structures such as columns, transparent walls, beams, for fins to stiffen facade elements, for shear panels, and for applications where the glass is used in a similar way to steel, aluminum or timber [233, 339]. Owing to the high slenderness of structural glass elements made of thin glass plates, they are unstable and tend to fail. Every inplane loaded glass element must, therefore, be checked against stability failure. Several established design methods exist for common structural materials (i. e. steel, timber), but these methods cannot be applied directly to glass, because the influence of production tolerances (thickness, variation in panel size) of the initial imperfections, of the brittle behaviour, and of the viscoelastic behaviour of laminated glass interlayers have to be specifically considered for glass. A substantial amount of fundamental research has been carried out in the past few years to investigate the stability behaviour of structural glass elements. Nevertheless, results are not yet implemented in existing design standards. Column buckling of glass elements was studied by Kutterer [234], Luible [243, 247], and Overend [268]. Fundamental research on lateral torsional buckling of glass beams was done by Belis [36], Holberndt [240], Kasper [224] and Luible [243, 245]. Research on glass plate buckling is a relatively new research field. First experimental and analytical studies were carried out by Englhardt [162], Luible [243] and Wellershoff [338, 339].

In the past, stability problems were described with bifurcation buckling models based on linear elastic stability theory. The bifurcation buckling theory assumes that a geometrically perfect elastic structural member that is subjected to an increasing load fails suddenly when a critical load is reached. This critical load depends only on the geometry, the loading conditions and the flexural stiffness of the element and may be determined by mathematical models (i. e. [325]) or by numerical approaches such as finite element analysis (FEA). Bifurcation buckling models are generally unable to describe the buckling

6

Design Methods for Improved Accuracy and Flexibility

6.1 Introduction

As mentioned in Section 4.6, many of the shortcomings of current standards, guidelines and design methods can be addressed with the generalized lifetime prediction model that was discussed in Section 3.3. This chapter provides an outline of this approach by summarizing the recommendations of Haldimann [189]. For more details, the reader can refer to this document.

6.2 Surface condition modelling

The lifetime prediction model described in Section 3.3 offers two alternatives for modelling a glass element's surface condition: a *single surface flaw (SSF)* and a *random surface flaw population (RSFP)*.

For structural design, it is essential to know which of these models to use and when. The characteristics and particularities of these two surface condition models are, therefore, discussed in the ensuing text. On this basis, recommendations for design and testing are given in Section 6.3.

6.2.1 Single surface flaw model

The surface condition of as-received glass can be characterized accurately by an RSFP, i. e. a large number of flaws of random depth, location and orientation (cf. Section 3.3.5). If, however, a glass element's surface contains a single flaw (or a few flaws) that is substantially deeper than the many small flaws of the RSFP, its resistance is likely to be governed by this deep flaw because it will initiate failure.

If the surface condition of a glass element can be represented by a SSF, its lifetime can be predicted by simulating the growth of this flaw using the equations derived in Section 3.3.4. A glass element is acceptable if a design flaw does not fail during the service life when the element is exposed to the design action history. In order to determine the

7

Glass Connections

7.1 Introduction

The traditional approach for dealing with connections between glass and other materials was to avoid direct contact between the glass and other harder materials thereby diverting loads or movement away from the glass. Although this sound engineering advice still holds true today, the past 25 years has seen an increasing architectural trend to maximize transparency when using glass. This trend can be traced through the chronological development of glass connections: from the linearly supported glazing associated with the curtain walls developed in the mid 20th century, to the patch plate friction fittings developed in the mid-1970s, to the bolted point supports developed in the 1980s and 1990s (*Figure 7.1*).

These developments show a gradual reduction in the size of the glass support and an increase in the magnitude and types of loads that are transmitted to the glass. In all

Figure 7.1: Summary of common glass support types.

8

Special Topics

8.1 Design assisted by testing

This text has been compiled in collaboration with the following experts: Benjamin BEER, Dr. Iris MANIATIS, Prof. Dr. Geralt SIEBERT

8.1.1 Introduction

Despite advances in the field of computational analysis, the design of complex glass structures cannot be based solely on numerical simulation. The reasons why full scale prototype testing remains an integral part of the design process of innovative glass structures, as well as the main issues that should be considered when testing glass elements, were discussed in Section 6.4.1.

Computational modelling, typically finite element models verified by rules of thumb, are required to predict the structural behaviour with an acceptable level of accuracy. The results from these calculations are often the basis for the first test prototype or specimen. Geometrical imperfections as well as tolerances should be taken into account to achieve a realistic test setup. A comparison between test results and the corresponding predicted values given by the model should be carried out. If major discrepancies are found, both the test setup and the model should be checked.

The fracture strength of heat-treated glass is the sum of the absolute value of the residual (compressive) surface stress and the inherent glass strength (see Section 3.3.2). Only the latter is influenced by subcritical crack growth and depends, therefore, on time and environmental conditions. The residual stress is constant. Consequently, results from experiments with heat-treated glass (heat-strengthened glass or fully tempered glass) in ambient conditions depend significantly less on time and environmental conditions than the results from tests on annealed glass.

General guidelines for design assisted by testing are given in the annexe of EN 1990:2002 [135]. The engineer must, however, bear in mind that this standard has not been specifically written for glass structures. Detailed reviews of the countless national standards, regional standards, building regulations and recommendations for

Appendix

Δ

Notation, Abbreviations

A.1 General information

Variables are defined and explained on their first occurrence only. In case of doubt, readers should refer to the symbol list below. It gives a short description of the variables as well as references to the place where they are defined in the text.

Particularly unfamiliar or important terms are defined in the glossary (p. 183).

The present document follows current regulations on technical and scientific typesetting, in particular [211], [212], [214] and [213]. Accordingly, *italic* symbols are used only to denote those entities that may assume different values. These are typically physical or mathematical variables. Symbols, including subscripts and superscripts, which do not represent physical quantities or mathematical variables are set in upright roman characters. (Example: The exponent '*n*' (italic) in σ_n^n is a physical variable, while the index 'n' (roman) is an abbreviation for 'normal'.)

A.2 Generally used indices and superscripts

X _{I, II, III}	related to crack mode I, II or III	\mathbb{X}_i	<i>i</i> -th value, case or time period
X _{adm}	admissible	\mathbb{X}_n	normal, normalized, national
\mathbb{X}_{c}	critical	w	in laboutoms tooting in laboutoms
\mathbb{X}_d	design level	[™] test	conditions
$\mathbb{X}_{\mathrm{eff}}$	effective	(;)	
\mathbb{X}_{eq}	equivalent	$\sigma^{(l)}$	<i>i</i> -th value, case or time period
\mathbb{X}_{f}	failure, at failure, related to fail-		(avoids O_1 and O_2 , which are the principal stresses)
	ure	(1)	principal stresses)
\mathbb{X}_{i}	initial	$\mathbb{X}^{(1)}$	related to a single crack
X _{inert}	in or for inert conditions	$\mathbb{X}^{(k)}$	related to k cracks

Appendix

R

Glossary of Terms

- Action General term for all mechanical, physical, chemical and biological actions on a structure or a structural element, e.g. pressures, loads, forces, imposed displacements, constraints, temperature, humidity, chemical substances, bacteria and insects.
- Action history The description of an action as a function of time.
- Abhesive A material that resists adhesion; a film of coating applied to surfaces to prevent sticking, heat sealing, and so on, such as a parting agent or mold release agent.
- **Abrasion (general)** The wearing away of a material surface by friction.
- Abrasion (decorative glass) A method of shallow, decoration grinding using a diamond wheel.
- **Absolute humidity** The weight of water vapour present in a unit of air.
- Accelerated ageing Any set of test conditions designed to determine, in a short time, the result obtained under normal conditions of ageing. In accelerated ageing tests, the usual factors considered are heat, light, and oxygen, either separately or combined.
- Accelerated weathering Machine-made means of duplicating or reproducing weather conditions. Such tests are particularly useful in comparing a series of products at the same time. No real correlation between test data and actual service is known for resins and rubbers used in many products.
- Acid etching A process, manly used for glass decoration, where the glass surface is treated with hydrofluoric acid. Acid-etched glass has a distinctive, uniformly smooth and satin-like appearance.

- Acoustical double glazing Two monolithic glass panels, set in a frame, with an air space between them.
- Acrylate resins Polymerization products of certain esters of acrylic and methacrylic acid, such as methyl or ethyl acrylate. Possess great optical clarity and high degree of light transmission. Nearest approach to an organic glass.
- **Acrylic** A group of thermoplastic resins or polymers formed by polymerizing the esters of acrylic acid.
- Action intensity The magnitude of an action, e.g. a load intensity, a stress intensity or the magnitude of an imposed deformation. See also 'load shape'.
- Active solar heat gain Solar heat that passes through a material and is captured by mechanical means.
- Adduct A chemical addition product.
- Adhere That property of a sealant/compound which measures its ability to bond to the surface to which it is applied.
- Adhesion The clinging or sticking of two material surfaces to each other. In rubber parlance, the strength of the bond or union between two rubber surfaces or plies, cured or uncured. The bond between a cured rubber surface and non-rubber surface, e.g., glass, metal, wood, or fabric.
- Adhesion failure (1) The separation of the two surfaces with a force less than specified. (2) The separation of the two adjoining surfaces due to service conditions.
- Adhesive setting Classifies the conditions to convert the adhesive from its packaged state to a more useful form.

Appendix

С

Statistical Fundamentals

C.1 Statistical distribution functions

Туре	PDF $f(x)$ CDF $F(x)$	Mean μ Variance σ^2
Normal	$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right)$	$\mu = \mu$
	$F(x) = \int_{-\infty}^{x} f(x) \mathrm{d}x$	$\sigma^2 = \sigma^2$
Log-normal	$f(x) = \frac{1}{\zeta x \sqrt{2\pi}} \exp\left(-\frac{1}{2} \left(\frac{\ln x - \lambda}{\zeta}\right)^2\right)$	$\mu = \exp\left(\lambda + rac{\zeta^2}{2} ight)$
	$F(x) = \int_0^x f(x) \mathrm{d}x$	$\sigma^2 = \mu^2 \left(\exp(\zeta^2) - 1 \right)$
Uniform	$f(x) = \frac{1}{b-a}$	$\mu = \frac{a+b}{2}$
	$F(x) = \frac{x-a}{b-a}$	$\sigma^2 = \frac{(b-a)^2}{12}$
Pareto	$f(x) = \frac{ab^a}{x^{a+1}}$	$\mu = \frac{ab}{a-1}$
	$F(x) = 1 - \left(\frac{b}{x}\right)^a$	$\sigma^2 = \frac{ab^2}{(a-1)^2(a-2)}$
Weibull	$f(x) = \frac{\beta}{\theta} \left(\frac{x}{\theta}\right)^{\beta-1} \cdot \exp\left(-\left(\frac{x}{\theta}\right)^{\beta}\right)$	$\mu = \theta \cdot \Gamma \left(1 + \frac{1}{\beta} \right)$
	$F(x) = 1 - \exp\left(-\left(\frac{x}{\theta}\right)^{\beta}\right)$	$\sigma^2 = \theta^2 \left[\Gamma \left(1 + \frac{2}{\beta} \right) - \Gamma^2 \left(1 + \frac{1}{\beta} \right) \right]$

Table C.1: Continuous statistical distribution functions.

References

- AAMA CW-13-85. AAMA CW-13-85: Structural Sealant Glazing Systems. American Architectural Manufacturers Association (AAMA), Schaumburg, USA, 1985.
- [2] Abrams, M. B., Green, D. J. and Glass, S. J. Fracture behavior of engineered stress profile soda lime silicate glass. *Journal of Non-Crystalline Solids*, 321(1-2):10–19, 2003.
- [3] Adams, R. and Harris, J. The influence of local geometry on the strength of adhesive joints. *International Journal of Adhesion & Adhesives*, 7(2):69–80, 1987.
- [4] Adams, R. and Wale, W. Structural adhesive joints in Engineering. Elsevier, London, UK, 1984.
- [5] Adams, R. D., Comyn, J. and Wake, W. C. Structural Adhesive Joints in Engineering. 2nd Edition. Chapman and Hall, London, 1997.
- [6] Addington, M. and Schodek, D. Smart Materials and Technologies in Architecture. Architectural Press, 2004. ISBN 0750662255.
- [7] Amstock, J. S. Handbook of Glass in Construction. McGraw-Hill, 1997. ISBN 0-070-01619-4.
- [8] AS 1288-2006. Glass in buildings Selection and installation. Australia, 2006.
- [9] AS website. Angstrom Sciences website. 2006. URL http://www.angstromsciences.com/.
- [10] ASCE GFI 1989. Guidelines for Failure Investigation. Technical Council on Forensic Engineering. American Society of Civil Engineers, 1989. ISBN 0872627365.
- [11] ASTM C 1036-2001. Standard Specification for Flat Glass. American Society for Testing Materials, 2001.

- [12] ASTM C 1048-04. Standard Specification for Heat-Treated Flat Glass – Kind HS, Kind FT Coated and Uncoated Glass. American Society for Testing Materials, 2004.
- [13] ASTM C 1172-03. Standard Specification for Laminated Architectural Flat Glass. American Society for Testing Materials, 2003.
- [14] ASTM C 1376-03. Standard Specification for Pyrolytic and Vacuum Deposition Coatings on Flat Glass. American Society for Testing Materials, 2003.
- [15] ASTM C 1401-02. Standard Guide for Structural Sealant Glazing. American Society for Testing Materials, 2002.
- [16] ASTM C 1422-99(2005). Standard Specification for Chemically Strengthened Flat Glass. American Society for Testing Materials, 2005.
- [17] ASTM C 1464-06. Standard Specification for Bent Glass. American Society for Testing Materials, 2006.
- [18] ASTM C 1503-01. Standard Specification for Silvered Flat Glass Mirror. American Society for Testing Materials, 2001.
- [19] ASTM D 1002-05. Standard test method for apparent shear strength of single-lap-joint adhesively bonded metal specimen by tension loading (metal-to-metal). American Society for Testing Materials, 2005.
- [20] ASTM D 3528-96. Standard test method for strength properties of double lap shear adhesive joints by tension loading. American Society for Testing Materials, 1996.
- [21] ASTM E 1300-03. Standard Practice for Determining Load Resistance of Glass in Buildings.

Index

4PB, 178

abhesive, 183 abrasion, 17 abrasion (decorative glass), 183 abrasion (general), 183 absolute humidity, 183 accelerated ageing, 183 accelerated weathering, 183 accepted risk, 29 acid etching, 17, 183 acoustical double glazing, 183 acrylate resins, 183 acrylic, 183 acrylics, 160 action, 183 action history, 183 action history effect, 103 action intensity, 183 active chromogenics, 19 active solar heat gain, 183 adduct, 183 adhere, 183 adhesion, 183 adhesion failure, 183 adhesive, 154 limit state design, 162 mechanical behaviour, 156 performance, 160 adhesive connection pretensioned, 166 rigid, 154 soft elastic, 154 adhesive setting, 183 adsorption, 184 ageing, 52, 184 ageing resistance, 184

ageing tests, 184 air infiltration, 184 air side, 184 air side (of glass), 2 alkali, 184 alkali leaching, 52 allowable stress, 86 ambient noise, 184 ambient strength data, 78, 138 ambient temperature, 184 ambient testing, 136 ANG, 178 annealed glass, 10 annealing, 2, 184 antiwalk blocks, 184 art glass, 184 artificially induced damage, 184 artificially induced surface damage, 184 as-received glass, 184 aspect ratio, 184 ASTM E 1300, 97 attenuation, 184 autoclave, 184 average refractive index, 7 back-fill, 184 bait, 184 bandage joint, 184 batch, 184 bead, 184 bent glass, see curved glass, 184 beta distribution, 195 bevel or compound bead, 184 bevelling, 184 biaxial stress correction factor, 96, 106

biaxial stress field, 64 bifurcation buckling, 107, 184 bite, 184 blast-resistant glass, 15 blocks, 184 body-tinted glass, see tinted glass bolted connection, 148 bolted connections performance, 148 recommendations, 148 scheme design, 151 bolted support, 148 bomb blast, 35, 158 bond (noun), 184 bond (verb), 184 bond breaker, 185 bond strength, 185 bonding agents, 185 borosilicate glass, 4 boundary conditions, 109 bow, 185 breather tube, 185 bronze glass, 185 Brown's integral, see risk integral, see risk integral BSG, 178 buckling, 185 buckling curve, 120, 127, 185 buckling diagram, 128 buckling length, 111 bull's eye, 185 bullet-resistant glass, 15 bullet-resistant glazing, 185 butt glazing, 185 butt joint, 185 butyl rubber, 185

CAN/CGSB 12.20-M89, 99 cast glass, 3 cast process, 3 CDF, 178 CDR, 178 centrifuging process, 3 ceramic frit colour, 17 chain polymerization, 185 channel, 185 channel glazing, 185 characteristic crack propagation speed, 51 chemical composition, 4, 53 chemical resistance, 185 chemical vapour deposition, 18 chemically strengthened glass, 185 chromogenics, 186 clamped fixing, 145 clips, 185 coating, 185 coaxial double ring test, 75 coefficient of expansion, 185 coefficient of thermal expansion, 7 coefficient of variation (CoV), 185 cohesive failure, 185 cold resistant, 185 colour cast glass, 185 column buckling, 108, 110, 185 column buckling models, 110 computing time, 185 concentric ring-on-ring test, see coaxial double ring test condensation, 185 conduction, 185 consistency, 186 constant load rate loading, 186 constant load rate testing, 75 constant stress rate loading, 186 constant stress rate testing, 75 convection, 186 corrosive media, 53 countersunk fixing, 165 crack, 55, 186 crack branching, 71 crack depth, 55 crack depth at failure, 59 crack front, 55 crack growth limit, see crack growth threshold crack growth threshold, 52 crack healing, 52, 104 crack length, 55 crack opening stress, 57, 68 crack orientation, 64 crack repropagation, 52 crack tip, 55 crack tip blunting, 52 crack velocity, 51

crack velocity parameter, 51 creep effects, 111, 112 critical buckling load, 123 critical crack depth, 58, 63 critical stress, 58 critical stress intensity factor, see fracture toughness cullet, 186 cure, 186 curtain walling, 186 curved glass, 16, 186 damping, 186 Danner process, 3 decompressed surface, 104, 105, 186 defect, 186 deflection, 186 deformation, 186 degradation, 186 dehydration, 186 delaminate, 186 delamination, 186 DELR design method, 88 density, 7 desiccants, 186 design, see structural design design flaw, 131, 133, 139 design life, 186 design method of damage equivalent load and resistance, see DELR design method dew point, 186 diamond cutter, 80 dichroic glass, 24 dimensionless stress distribution function, 68 dip coating, 18 direct crack growth measurement, 74 discoloration, 186 double glazing, double-glazed units, 186 drawing tower, 186 dual sealed system, 186 duration-of-load effect, see load duration effect dynamic fatigue test, 75 dynamic viscosity, 6 edge clearance, 186 edge joint, 186 edge strength, 80

edge joint, 186 edge strength, 80 effective area, *see* equivalent area effective nominal flaw depth, 186 elastic critical buckling load, 110 elasticity, 186 elastomer, 154, 186 electrochromic glazing, 21 elongation, 186 emissivity, 7, 186 emittance, 186 empirical cumulative distribution function, 195 empirical probability of failure, 195 enamel, 186 enamelled glass, 17, 186 energy absorptance, 187 energy reflectance (RE), 187 energy release rate, 56 environmental fatigue, 50 EPDM, 144, 148, 187 epoxies, 160 equibiaxial stress field, 75, 106, 187 equivalent t_0 -second uniform stress on the unit surface area, 67 equivalent area, 68 equivalent bending stiffness, 115 equivalent reference stress, 67 equivalent representative stress, 68,69 equivalent resistance, 61 equivalent stress, 61 equivalent thickness, 111 equivalent torsional stiffness, 116 equivalent uniformly distributed stress, 66 estimator, 195 European design methods, 102 expectation value, 195 exposed glass elements, 40 exposed surface, 133 exterior glazed, 187 exterior stop, 187 extruded, 187 fabric embeds, 164 face, 187 failure probability, 63 fatigue limit, see crack growth threshold FE, 178 finite element analysis, 41 fire protection glass, 9, 15 flat glass, 187 flaw, 187 float glass, 187 float process, 2 fogged unit, 187 forming, 187 four-point bending test, 75 fracture pattern, 10, 125 fracture strength, 57

fracture toughness, 51, 57

friction-grip connection, 145 front putty, 187 frost point, 187 frosted glass, 17, 187 FTG, 178 fully tempered glass, 10, 57, 187 furnace, 2

g, 187 gas-filled units, 187 gasket, 187 gasochromic glazing, 22 geometric non-linearity, 40 geometry factor, 56, 77 GFPM, see glass failure prediction model glass, 4, 187 glass beam, 115, 117 glass connections, 143 glass corner, 145 glass edge, 80, 145 glass edges, 78 glass failure prediction model, 96 glass fibres, 8 glass fin, 115 glass pane, 9 glass products, 9 glass profiles, 3 glass thickness, 109 glass transition temperature, 4 glass tubes, 3 glass type, 10 glass type factor, 98 glass unit, 9 glazing, 187 glazing bead, 187 glazing beads, 144 glazing channel, 187 glue, 187 glued connection, 152 greenhouse effect, 6 greenhouse glass, 187 guarding, 187

hard coatings, 18 hardness, 188 hazard scenario, 28 heat strengthened glass, 10, 12, 57, 188 heat-absorbing glass, 188 heat-soak test (HST), 188 heat-soak test (HST), 188 heat-treated glass, 57, 188 heel bead, 188 holes, 78 homogeneous, 188 HSG, 178 humidity, 53 hysteresis effect, 52

IGU, see insulating glass unit immersion, 188 impact, 188 impact loads, 35 impact strength, 188 in-plane loading, 107 in-plane principal stress, see principal stress indentation flaws, 74 inert failure probability, 63 inert fatigue, 50 inert strength, 58 inert testing, 136 infill panel, 188 inherent strength, 57, 91, 103, 104, 188 initial crack depth, 59 initial deformation, 109 initial imperfection, 126 injection mortar, 145 ink-jet printing, 17 inner pane, 188 inspection, 134 insulating glass unit, 9, 15 insulating glass unit (IGU), 188 intaglio, 188 integrity, 188 interior glazed, 188 interior muntins, 188 interior stop, 188 interlayer, 188 intermediate materials, 144 internal pressure loads, 38 intumescence, 188 IPP. 178 Irwin's fracture criterion, 57 joint, 188 Knoop hardness, 7 laminated glass, 9, 110, 188 lap joint, 188 lateral load, 188 lateral torsional buckling, 108, 115, 188 least squares method, 196 LEFM, see linear elastic fracture mechanics, 178 lehr. 2, 188 lifetime, 59 lifetime prediction model, 49 light emitting diodes, 23 light reducing glass, 188 light reflectance, 188 light transmittance, 188 linear elastic fracture mechanics, 55 linear supports, 144

linearly supported glazing, 144 liquid crystal glazing, 21 lite, 188 load duration effect, 103, 104 load duration factor, 188 load shape, 189 loading rate, 53 loading time, 189 log-normal distribution, 106, 194 long, straight-fronted plane edge crack, 78 long-term loading, 133 low emissivity coating (low-e coating), 189 low iron glass, 6, 189 low-emissivity (low-e) coating, 18 magnetron sputtering, 18 maximum likelihood method, 196 mean rank, 195 mechanical fixings, 144 median, 196 median rank, 196 melting temperature, 4 metal spacers, 189 metal-to-glass adhesive, 166 method of moments, 197 mode I, 189 momentary critical crack depth, 65 monotonously increasing, 189 mullion, 189 multiple-glazed units, 189 muntin, 189 near-inert conditions, 59 neoprene, 189 neoprene gasket, 144 nickel sulfide inclusion, 189 non-exposed surfaces, 135 non-factored load, 98 non-uniform stress field, 64, 189 normal distribution, 106, 194 North American design methods, 102 numerical stability analysis, 117 off-line coating, see sputtered coating on-line coating, see pyrolytic coating one-component silicone, 157 opaline glass, 189 opaque glass, 189 optical properties, 6 optical quality, 13 ornamental glass, 189 Orowan stress, 55 outer pane, 189 overall heat transfer coefficient, 16

pane (of glass), 189 Pareto distribution, 63, 194 passive chromogenics, 19 passive solar heat gain, 189 patterned glass, 17, 189 PEEK, 148, 189 peeling, 189 permanent set, 189 permeability, 189 permeance, 189 pH value, 53 photochromic glazing, 19 photovoltaic glass, 24 physical properties, 6 Pilkington Brothers, 2 plastics, 189 plate buckling, 108, 122, 189 point estimate, 197 point supports, 150 points, 189 Poisson distribution, 195 Poisson's ratio, 7 polyvinyl butyral, see PVB POM, 148, 189 post buckling capacity, 123, 125 post-breakage structural capacity, 170 potash, 189 predictive modelling, 189 prEN 13474, 90 primary seal, 190 primer, 190 priming, 190 profile glass, 190 protective glazing, 158 purlins, 190 PV. see photovoltaic glass PVB, 109, 178, 190 pyrolytic coating, 18, 190 quality control, 134 quarter circle crack, 78 R-value, 190 R400 test setup, 75 radiation, 190 rafters, 190 random surface flaw population, 62, 131, 132 random variable, 195 rebate, 190 reduction factor, 121, 127 reference ambient strength, 67 reference inert strength, 64 reference time period, 61 reflection, 6 reflective coating, 190

relative heat gain, 190

renucleation, 52

residual stress, 104, 190 residual surface stress, 57, 81 resin laminate, 190 rheology, 190 rigid adhesive connection, 160 rigidity, 190 risk analysis, 28 risk integral, 59, 104 rolled glass, 3 rollerwave, 190 RSFP, see random surface flaw population, 178 safe countersunk fixing, 165 safety glass, 10 sandblasting, 17, 190 sandpaper scratching, 78 sash, 190 scale parameter, 63, 76 SCG, 178 score side, 190 screen printed glass, 17, 190 sealant, 190 sealants (for insulating glass units), 190 secondary seal, 190 seismic load, 35 self-cleaning glass, 23 self-fatigue, 12 service situation, 28 setting, 190 setting blocks, 190 severe damage, 40, 133 shading coefficient, 190 shape parameter, 63, 76 Shen, 92 short-term loading, 134 SIF. 178 silica, 190 silicates, 191 silicone seal, 191 silvering, 191 single surface flaw, 131, 133 size effect, 64, 105 skylight, 191 slenderness ratio, 113, 127, 191 sloped glazing, 191 slow crack growth, 50 SLSG, 178 soda lime silica glass, 4 soft coatings, 18 solar control coating, 18, 191 solar energy absorption, 191 solar factor g, 191 solar heat gain, 191 solidification, 4 sound reduction index, 191 spacer, spacer bar, 191

representative stress, 67

spacers, 191 spall, 191 spandrel, spandrel panel, 191 specific thermal capacity, 7 sputtered coating, 191 SSF, see single surface flaw, 178 SSG, 191 SSGS, 156, 191 stability, 107, 191 starved joint, 191 static fatigue, 50 static fatigue test, 75 static long-term tests, 75 stepped-edge unit, 191 stop, 191 strength, 191 stress corrosion, 50 stress corrosion limit, see crack growth threshold stress distribution function, see dimensionless stress distribution function stress intensity factor, 51, 56 stress rate, 191 structural design, 66, 191 structural glazing, 191 structural sealant glazing, 191 structural silicone sealant connections, 156 sub-critical crack growth, 50, 65 sunlight, 191 supercooled, 191 supply rate, 51 surface condition parameters, 137 surface crack, 55 surface damage, 40 surface damage hazard scenario, 28, 31 surface decompression, 58 survival probability, 63 suspended particle glazing, 21 tank, 191 target failure probability, 64, 66, 67 temperature, 53 tempered glass, 191 tempering, 9 chemical, 12 thermal 10 tensile strength, 8, 192 tensile strength ratio, 70 testing, 136 thermal break, 192 thermal conductivity, 7 thermal expansion coefficient, 4 thermal movement, 145 thermal stress, 38, 192 thermal transmittance, see U-value

214

thermochromic glazing, 20 thermoplastic, 154, 192 thermoset, 155 thermotropic glazing, 20 threshold stress intensity, 51, see crack growth threshold through bolt connection, 150 through-thickness crack, 74 time of loading, 192 time to failure, see lifetime time-dependent failure probability, 65 time-dependent loading, 65 tin bath, 2 tin side, 192 tin side (of glass), 2 tinted glass, 17, 192 total heat gain, 192 total heat loss, 192

total transmittance, see solar factor toughened glass, 192 transient analysis, 192 transient finite element analysis, 67 transition temperature, 4 translucent, 192 transmittance, 192 transparency, 6 transparent, 192 transverse seam, 192 **TRAV. 86** TRLV. 86 two-component silicone, 157 two-part compound, 192 U-value, see overall heat transfer

coefficient, 192 ultimate elongation, 192 uniaxial stress field, 75, 192 uniform distribution, 64, 194 uniform lateral load, 192 uniform stress field, 192 unmitigated risk, 29

vinyl glazing, 192 viscoelastic behaviour, 109 viscosity, 4, 192 visible light transmittance, 192 volume crack, 55

weep hole, 192 Weibull distribution, 63, 76, 105, 194 Weibull parameters, 197 wire glass, 192 wired glass, 3

Young's modulus, 7

You may order SED monographs, or get information on other IABSE publications, directly from:

IABSE, ETH Zürich, CH-8093 Zürich, SwitzerlandPhone: +41-1-633 2647Fax: +41-1-633 1241e-mail: secretariat@iabse.orgweb: www.iabse.orgOrder Form: www.iabse.org/publications/orderform

Structural Engineering Documents 10 Structural Use of Glass, by Matthias Haldimann, Andreas Luible, Mauro Overend

Published: May 2008; 215 pages; ISBN 3-85748-119-2

Structural Engineering Documents 9 Cable Vibrations in Cable-Stayed Bridges, by Elsa de Sa Caetano

Published: October 2007; 188 pages; ISBN 978-3-85748-115-4

Structural Engineering Documents 8

Use and Application of High - Performance Steels for Steel Structures, by Hans-Peter Günther

Published: October 2005; 152 pages; ISBN 3-85748-113-7

Structural Engineering Documents 7 Use of Fibre Reinforced Polymers in Bridge Construction, by Thomas Keller

Published: August 2003; 131 pages; ISBN 3-85748-105-0

Structural Engineering Documents 6 Structural Bearings and Expansion Joints for Bridges, by Günter Ramberger

Published: May 2002; 89 pages; ISBN 3-85748-105-6

Structural Engineering Documents 5 - Revised Version Introduction to Safety and Reliability of Structures, by Jörg Schneider

SED 5 revised version (2006) includes Variables Processor software, supporting the subjects treated *free:* educational version VaP 1.6; *one-year free trial:* professional version VaP 2.2

Published: second edition 2006; 109 pages; ISBN 3-85748-093-6

Objective:

To provide in-depth information to practicing stuctural engineers in reports of high scientific and technical standards on a wide range of structural engineering topics.

Topics:

Structural analysis and design, dynamic analysis, construction materials and methods, project management, structural monitoring, safety assessment, maintenance and repair, and computer applications.

Readership:

Practicing structural engineers, teachers, researchers and students at a university level, as well as representatives of owners, operators and builders.

Publisher:

The International Association for Bridge and Structural Engineering (IABSE) was founded as a non-profit scientific association in 1929. Today it has more than 3900 members in over 90 countries. IABSE's mission is to promote the exchange of knowledge and to advance the practice of structural engineering worldwide. IABSE organizes conferences and publishes the quarterly journal Structural Engineering International, as well as conference reports and other monographs, including the SED series. IABSE also presents annual awards for achievements in structural engineering.

For further Information:

IABSE-AIPC-IVBH ETH Zürich CH-8093 Zürich, Switzerland Phone: Int. + 41-44-633 2647 Fax: Int. + 41-44-633 1241 E-mail: secretariat@iabse.org Web: www.iabse.org Recent architectural trends and technological developments have brought about unprecedented opportunities and exciting changes in the use of glass in buildings.

Structural engineers currently have a bewildering array of glass products and configurations to choose from and a wide range of normal and exceptional loading conditions to consider, but very few unified reference texts for undertaking these tasks. This book attempts to redress this issue by providing an overview of the recent developments in this field thereby providing a basis for the understanding of the structural performance and design of glass in buildings.

Each chapter draws on the latest developments in practice and research and contains contributions from various international glass experts. The mix of general and specialist content ranging from rules of thumb to fracture mechanics and novel applications to post-breakage performance make this book useful to practitioners and researchers. Furthermore, the text is supplemented by tables of the major codes of practice and by an extensive list of references.

The book is primarily for structural engineers and researchers who have an interest in structural glass. It will be used by senior undergraduates, post-graduate students, researchers and practicing engineers.