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Summary

Seismic responses of a high-rise base-isolated building in Tokyo Institute of Technology were
recorded during the 2011 Tohoku-oki earthquake. This paper explains a variety of numerical
techniques such as transfer function curve-fitting procedure for system identification, comparison
with conventional structure by modal analysis, damper hysteresis, axial force variation of rubber
bearing, and dynamic characteristic variation due to input amplitude. Reliability of recorded results
is confirmed by various methods, and applicabilities of the techniques for the high-rise isolated
building are discussed.
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Target Building and Monitoring System

Target Building is a 20-story office building of Tokyo Institute of Technology located in Yokohama
(Fig.1). The floors are composed with hybrid structure both steel beams and CFT columns. So
called Mega-Braces are installed on the both sides of building because the

horizontal stiffness is necessary to maintain the seismic isolation effects.

The plan of the isolation floor and the types of each devise are shown in Fig.

2. To avoid the large tensile forces during a major earthquake, the rubber

bearings are allowed to move upward within 20 mm of gap distance (Fig. 2a).

In this monitoring system, the accelerometers are placed on the 1st, BI-, 2nd,
7th, 14th and 20th floor. In order to measure the story drift of the isolated
floor directly, the displacement sensors for long and short stroke are installed
(Figs. 4a and 4b). In order to measure the up-lift behavior of corner bearings,
the displacement sensors for short stroke are installed as shown in Fig. 4c.

Recorded Data
Peak ground accelerations were 51.4 gal and 67.1 gal in the X- and Y- Fig. 1: Target bldg.

direction. Peak accelerations at the 20th floor were 87.7 gal and 116.6 gal in
the X- and Y-direction. Fig. 7 compares the

deformations of isolation system obtained from
the scratched lines created by the trace recorders,
and data from wire type displacement sensors.
The deformations obtained from the three
distinct methods agree well, validating the
measurement method and data. Peak
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System Identification and
Interpretations by Modal Analysis
Natural frequencies, damping ratios and modal

participation vectors are computed by curve- Fig. 2: Distribution of NRBs and dampers
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Axial force of rubber bearing is calculated from (P Analysis of superstructure, using 2FL acc. as input.

the CFT column strain and Mega-brace strain.  Fig. 10: Comparisons of top-level behavior
Imm up-lift are observed just one time (Fig. 15, between recorded data and modal analysis
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drift of Bl-floor, (a) ~ (d): X-dir. (e) ~ (h): Y-dir. Fig. 15: Up-lift behavior of NRB





