

CONFERENCE PROCEEDINGS 6-8.9.2017 TU-BERLIN

CONFERENCE 6.-8.9.2017 TU-BERLIN

SPONSORS

MAIN SPONSORSHIP

YOUNG AUTHORS' **AWARD SPONSOR**

FOOTBRIDGE 2017 AWARD SPONSOR

INSTITUTIONAL SPONSORS

IABSE

MEDIA PARTNERS

CONFERENCE PROCEEDINGS 6-8.9.2017 TU-BERLIN

Scientific Committee

Mike Schlaich (Chair) Laurent Ney (Co-Chair) José Romo (Co-Chair) Germany Belgium Spain

António Adão da Fonseca Portugal John Anderson South Africa **Ursula Baus** Germany United Kingdom Cezary Bednarski Jorge Bernabeu Spain Jan Biliszczuk Poland United Kingdom James Brownjohn Elsa Caetano Portugal Pablo Castro Uruguay Fabián Consuegra Colombia Switzerland Jürg Conzett Wolfgang Eilzer Germany Christian Ernst Germany Ian Firth United Kingdom Yozo Fujino Japan Arndt Goldack Germany Mario Guisasola Spain Wasoodev Hoorpah France Hongwei Huang China Rein Jansma Netherlands Manuel Jara Mexico Poul Ove Jensen Denmark Akio Kasuga Japan Ken'lchi Kawaguchi Japan Andreas Keil Germany Martin Knight United Kingdom Jan Knippers Germany Serge Montens France

Iván Muñoz Spain Sriram Narasimhan Canada Yves Pagès France Alberto Patrón Solares Mexico Miquel Rosales USA Enzo Siviero Italy Juan Sobrino Spain Jiri Strasky **Czech Republic** Kyo Takenouchi Japan Mahesh Tandon India Peter Van den Broeck Belgium Philippe Vion France Krzysztof Zółtowski Poland

Organizing Committee

Arndt Goldack (Chair)	Germany
Nicolas Janberg (Co-Chair)	Germany

Silke Burkard-Mies	Germany
Monika Jocher	Germany
Stephanie Mand	Germany
Guido Morgenthal	Germany
Helena Russell	United Kingdom
Volker Schmid	Germany

Conference Organizer

TUBS GmbH TU Berlin ScienceMarketing Hardenbergstraße 19 10623 Berlin

Introduction

We welcome you to the 6th International Footbridge Conference here in Berlin from 6th to 8th September 2017. As with the preceding events held in Paris, Venice, Porto, Wroclaw and London, bridge designers and builders from all over the world have come together to share their views, to exchange ideas, to learn and - last but not the least - to catch up with colleagues and friends.

Footbridges are an important component of our built environment, they can add a lot to the culture of building and they are exciting to work on. Their design brings together experts from numerous disciplines, such as civil engineers and architects, artists, landscape designers and lighting experts.

This sixth conference follows in the footsteps of earlier conferences in that the theme of structural dynamics – Dynamics and Innovation –, which triggered the first conference in Paris, will be kept on the agenda. What is new in this conference is that there are two themes that the Scientific Committee have identified as stimulating and important not only to the footbridge community, but to the designers working in many other fields of construction: Cultivate Debate and Footbridges for Berlin.

Mike Schlaich (Chairman of the Scientific Committee), Laurent Ney and José Romo (Co-Chairmen).

Themes of the conference

Cultivate Debate

Tell your colleagues stories about a design of yours or the concepts, ideas, challenges behind a new material, an algorithm or a construction sequence you have used. Explain from whom or what you have learned or enter into a discourse about your own work or that of others. Structural and civil engineers in particular are not experienced in discussing their work, in participating in critique without offending, in consciously entering debate on their design ideas, in defending them or arguing the case of others. Inspire your colleagues by telling your story.

Dynamics and Innovation

In the late 1990s some well-known pedestrian bridges suffered from excessive excitations and no immediate solutions were available. Research on pedestrian-induced vibrations rapidly became a hot topic in the engineering community and a main theme for footbridge 2002 in Paris. Even now it is a subject of great importance and we are looking forward to interesting research papers on dynamics issues such as identification of vibrations and dealing with them. Furthermore, many contributions on innovations in the field of footbridges were submitted to the conference.

Footbridges for Berlin

Venice, Paris, or London — the images of these cities are defined considerably by their many pedestrian bridges. Berlin also offers a wide and still unexploited potential for this exciting building task. These bridges contribute significantly to the quality of life of city residents and furthermore their planning and construction require the close cooperation of construction engineers, architects, landscape and lighting planners. Footbridges, therefore, represent an important and interdisciplinary contribution to building culture. As part of the international conference "Footbridge 2017", experts from around the world developed bridge ideas for six typical locations in the German capital, under the title "Tell a Story". The separate book "the World's Footbridges for Berlin" published by Jovis provides an illuminating insight into the current state of footbridge design.

Content

Keynote lectures	17
FOOTBRIDGE DYNAMIC PERFORMANCE ASSESSMENT USING INERTIAL MEASUREMENT UNITS J. Brownjohn, M. Bocian, D. Hester	18
TASTE A WORLD OF DIFFERENCE K. Brownlie	28
INFRASTRUCTURE TO CREATE VALUE M. Mimram, R. Ionica	36
FOOTBRIDGES WITH PRESTRESSED CONCRETE DECKS J. Strasky, R. Necas	44
Cultivate Debate	

Positions	55
SUBLIMATION (FOOTBRIDGE TRANSITION) G. Collell Mundet	56
BRIDGES AT NIGHT - HOW TO LIGHT A BRIDGE? A. Keil, C. Sander	58
DESIGN AT THE EDGE - BRIDGE PARAPETS C. Ernst, J. Jensen	60
WINNING OR NOT - IN COMPETITION, THE JOURNEY IS THE REWARD V. Angelmaier	62
THE MODERN ENGINEER'S JANUS FACE: DELIVERING RELIABILITY AND MYSTIFICATION M. Rinke	64
WALKING ON A SPIDERS WEB - SOFIE'S BRIDGE P. Jensen, S. Trojaborg, J. Henriksen	66
World Bridges	69
BRIDGING MZAMBA - PERSPECTIVES ON TRANS-DISCIPLINARY AND CROSS-CULTURAL IMPLEMENTATION PROCESS M. Wagner	70
CHANGING PARADIGM OF INDIAN FOOTBRIDGES: FROM CONNECTORS TO DESTINATIONS R. Batliboi	72
LONG-SPAN PEDESTRIAN BRIDGES IN THE USA - A FUTURISTIC APPROACH M. Sarkisian, E. Long, N. Mathias, J. Gordon, A. Beghini, R. Garai, A. Krebs	74
SIX LANGUAGES AND CULTURES FOR THE DESIGN & CONSTRUCTION OF A NEW CABLE-STAYED PEDESTRIAN BRIDGE AT ALGIERS BAY	76

S. Mohr, D. Cobo del Arco, I. Raventós Dudous

HE KÖRERO TAKIWĀ, HE TAKIWĀ KŌRERO / STORIES WITHIN SPACES, SPACES DEFINED BY STORIES:78FOOTBRIDGE DESIGN CONCEPT, CHRISTCHURCH, NEW ZEALANDA. Sarkis, G. Granello, R. Liu, B. McHaffie, C. Capellaro, E. Wallbanks, D. Patterson, A. Palmero,
A. Kreisler , P. MillarA. Kreisler , P. Millar

DESIGNING FOR THE REALITIES OF A DAY IN THE LIFE OF A GOOD LOOKING BUT HARDY FOOTBRIDGE80J. Anderson, E. Kruger, M. Lethale81

Future	83
PLAYING STRUCTURAL EFFICIENCY WITH ARCHITECTS R. Bastos, A. Fonseca, A. da Fonseca	84
BIM AND THE ART OF MOTORCYCLE MAINTENANCE M. Knight	86
PAPER AND PENCIL IN THE AGE OF BIM. DESIGN AND CONSTRUCTION OF THE BUTARQUE FOOTBRIDGE P. Tanner, J. Bellod, D. Sanz	88
RETHINKING CITIES S. Trojaborg, P. Jensen, J. Henriksen	90
THE FUTURE OF THE FOOTBRIDGE ENGINEER IN THE PURPOSE ECONOMY E. Thie	92
DIFFICULT ROOTS AND HAPPY ENDS - HOW TO MASTER THE DESIGN PROCESS B. Reyher	94
Case Studies I	97
THE FUTURE TRANSPORTATION NODE KØGE NORTH STATION J. Henriksen, S. Trojaborg, P. Jensen	98
SHARED PLATFORM FOOTBRIDGES IN RURAL ENVIRONMENTS: FOOTBRIDGE OVER MIÑO RIVER IN OS PEARES (OURENSE) J. Corbal, A. Meijide, A. Antón	100
NEXT CONNECTS: BRIDGES AS SOCIO-CULTURAL PRACTICES M. Schreinemachers, B. Reuser, M. Schenk	102
MOODY PEDESTRIAN BRIDGE UNIVERISITY OF TEXAS IN AUSTIN, TX, US M. Rosales	104
JUBILEE BRIDGE IN THE HEART OF SINGAPORE P. Burnton, S. Lin Ming, L. Chye Wong	106
ELIZABETH QUAY PEDESTRIAN BRIDGE, PERTH - THE JEWEL OF THE QUAY P. Burnton, N. Birmingham, S. Buxton	108
Case Studies II	111
DESIGN OF 10 FOOTBRIDGES IN NEW HIGHWAY "EXPRESS PASS OF CUERNAVACA", Mexico A. Patron. C. Poon. A. Melo. E. Morales. E. Reves	112
DAFNE SCHIPPERSBRUG: DESIGN AND CONSTRUCTION D. Karagiannis , R. Vernooij, D. Tuinstra	114
THE BRIDGE OF THE DIALOGUE IN CHIAVENNA (ITALY) E. Siviero, V. Martini	116
ONE PEDESTRIAN SUSPENSION BRIDGE WITH SPATIAL UNILATERAL HANGERS AND TWIN CURVED DECKS IN SHANGHAI Y. Fang , X. Pang, B. Hua	118
DESIGN, CONSTRUCTION AND HEALTH MONITORING FOR A LARGE SPAN PEDESTRIAN BRIDGE Q. Zhang, H. Chen, X. Luo	120
CREATIVE DESIGN RESOURCE: REVELATION ON FOOTBRIDGE OF JÖRG SCHLAICH L. Ren, A. Chen	122

Case Studies III 1	25
AN INTERNATIONAL ARRIVAL: THE COLLABORATIVE DESIGN OF AN ICONIC AIRPORT FOOTBRIDGE M. Sarkisian, M. Schlaich, N. Mathias, M. Stein, P. Draper, J. McCann	126
BEER SHEVA FOOTBRIDGE, ROKACH-ASHKENAZI ENGINEERS I. Rokach , D. Levin	128
WEITERLEITEN BRIDGE J. Strydom, J. Liebenberg	130
ZABALGANA FOOTBRIDGE OVER MADRID - IRÚN RAILROAD IN VITORIA J. Romo, F. Prieto, L. Capdevila	132
ST. PHILIPS PEDESTRIAN AND CYCLIST BRIDGE IN BRISTOL. A HOLISTIC AESTHETIC, STRUCTURAL AND FUNCTIONAL DESIGN H. Beade-Pereda, J. McElhinney, R. Romo-Torres, B. Barbulescu	134
MORE THAN A FOOTBRIDGE - THE NEW BAAKENHAFEN CROSSING COMPLEXITY OF DEVELOPING A MULTI-FUNCTIONAL STRUCTURE IN AN URBAN CONTEXT T. Helbig, T. Müller , M. Oppe, R. Schieber	136
Case Studies IV 1	39
THE GOLDEN BRIDGE - A FOOTBRIDGE OVER THE SARAWAK RIVER K. Chew, K. Choong, L. Lichok	140
LA PASSERELLE DU MARCHE - MAISONS-LAFFITTE P. Chassagne, Y. Pages, O. Canat	142
THE OBSERVATION POINT "WOLKENHAIN" - BRIDGE AS WELL AS TOWER: A NEW LANDMARK IN BERLIN T. Klähne, G. Kubieniec	144
SWAN RIVER PEDESTRIAN BRIDGE IN PERTH - STRUCTURAL DESIGN STORY FROM THE CONCEPT TO THE CONSTRUCTION M. Majowiecki, S. Pinardi, G. Berti	146
NATURAL AND LANDSCAPE INSPIRATIONS IN DESIGNING OF MODERN FOOTBRIDGES <i>M. Furtak</i>	148
A POLYESTER-ROPE SUSPENDED FOOTBRIDGE IN AIT BAYOUD, MOROCCO: STRUCTURAL ANALYSIS AND KEY DETAILS E. Segal , R. Woodward, S. Adriaenssens, T. Zoli	150
NEW GENERATION OF FOOTBRIDGES FOR DELHI, INDIA <i>M. Tandon, S. Srivastava</i>	152
Case Studies V 1	55
DESIGN OF RAOS FOOTBRIDGE OVER THE A-67 MOTORWAY, SANTANDER (SPAIN) G. Capellán, M. Sacristán, A. Godoy, M. García, S. Urdinguio, J. González	156
TRIPOD FOOTBRIDGE, TERNI (ITALY) THE BRIDGE AS A PUBLIC REALM DRIVER OF URBAN REGENERATION R. Benedetti, C. Sorrentino, O. Manfroni	158
BICONTENTIO SINUS FOOTBRIDGE IN SAN SEBASTIÁN M. Guisasola	160
FALMER HIGH LEVEL WALKWAY A. Oliver	162
A WALKABLE SCULPTURAL STRUCTURE STRESS RIBBON BRIDGE AT TIRSCHENREUTH, GERMANY W. Strobl	164
COMBINED CABLE-STAYED STRESS RIBBON BRIDGES G. Goberna, M. Goberna	166

Case Studies VI	169
OO 2804 A FOOTBRIDGE OVER THE WATERSPORTBAAN IN GHENT P. D´Haeseleer, K. Boghaert	170
DIFFICULTIES ENCOUNTERED DURING THE CONSTRUCTION OF QINGCHUN IRREGULAR-SHAPED FOOTBRIDGE M. Wang, J. Wang, H. Xiang	172
MANAGEMENT OF CONSTRAINTS TO CREATE MEANINGFUL PLACES: NEW FOOTBRIDGE OVER THE RIVER MOGENT IN MONTRONÈS DEL VALLÈS X. Font	174
DIATOMEA FOOTBRIDGE - INTEGRATING MODERN INFRASTRUCTURE INTO A NATIONAL PARK IN CHILE F. Schanak, J. Reyes, J. Osman Letelier	176
ADVENTURE ART CONSTRUCTION M. Kadel	178
EXAMPLE OF AN URBAN FOOTBRIDGE - A SAFE WAY HOME J. Biliszczuk, J. Onysyk, M. Sułkowski, R. Toczkiewicz	180
OUR STORY CONTINUES GENESIS OF A FOOTBRIDGE FROM A COMMUNITY PERSPECTIVE M. Wing, R. Woolf	182
Case Studies VII	185
PASSERELLE DE LA PAIX, LYON A STORY ABOUT THE EFFORT TO APPEAR EFFORTLESS A. Keil, S. Linden, M. Zimmermann	186
"PASSERELLE DU MILLÉNAIRE", PARIS Y. Pagès, M. Ferrari, M. Cassagnes	188
"LA BELLE LIÉGEOISE", THE NEW FOOTBRIDGE IN LIÉGE V. Servais, F. Gens	190
AILSA WHARF FOOTBRIDGE: CREATIVITY THROUGH COLLABORATION C. Smith, B. Curry	192
MANGERE ARCH FOOTBRIDGE, AUCKLAND, NEW ZEALAND DESIGN OF A 60M TIED ARCH, HARBOUR CROSSING J. McNeil, A. Reeves	194
CROSSING THE VIAMALA GORGE J. Conzett	196
Case Studies VIII	199
A PARK WITH BRIDGES "MURGAUENPARK" FRAUENFELD, SWITZERLAND J. Conzett	200
THE JOHN V. TUNNEY BRIDGE: A NEW COURTYARD CONNECTION FOR THE HAMMER MUSEUM L. Walgenwitz, G. Nordenson, K. Bensuka	202
MARKARFLJOT FOOTBRIDGE - A SLENDER LONG SPAN SUSPENSION BRIDGE IN WINDY SURROUNDING K. Oskarsson, M. Arason, S. Christer, E. Ingolfsson	S 204
A CONCEPTUAL APPROACH TO DESIGN OF FUNICULAR SPATIAL ARCHES IN FOOTBRIDGES J. Jorquera-Lucerga	206
KAI TAK LANDSCAPED DECK-CONCEPT DESIGN L. Wojnarski, N. Hussain, M. To	208
FOOTBRIDGE FLUGFELD BÖBLINGEN SINDELFINGEN CLIENT AND DESIGNER IN COOPERATION A. Keil, T. Waldraff	210

Education and Guidelines	
THE SCHOOL OF BRIDGE DESIGN IN ECAMPUS, COMO, ITALY E. Siviero, A. Zanchettin	214
THE BOOK "FOOTBRIDGES - SMALL IS BEAUTIFUL" G. Humar, E. Siviero	216
TEACHING ARCHITECTS TO DESIGN PEDESTRIAN BRIDGES C. Herr	218
EDUCATION OF FUTURE BUILDERS THROUGH FOOTBRIDGE DESIGN TO CONSTRUCTION PROJECTS H. Capart, C. Chou, S. Hsieh, P. Kuo, W. Yu, L. Lu, T. Hsu, M. Tomita	220
DUTCH DESIGN GUIDE FOR BICYCLE AND PEDESTRIAN BRIDGE DESIGN A. Kok, N. Degenkamp	222
FOOTBRIDGE DESIGN AS AN ACT OF INEXPERIENCE I. Filkovic	224
Historic Context and Reconstruction I	227
FOOTBRIDGE IN THE OLD CENTRE OF LJUBLJANA OR HOW THIN CAN BRIDGE BE V. Markelj, P. Gabrijelčič	228
HARLECH CASTLE FOOTBRIDGE - A STRUCTURE THAT CONNECTS THE PAST WITH THE PRESENT K. Andrasi, B. Duguid	230
STRUCTURES ON PEDESTRIAN AND BICYCLE PATHS IN HISTORIC PARTS OF CITIES J. Biliszczuk, J. Onysyk, H. Onysyk	232
CROSSING HAMBURG´S HISTORIC SCHLEUSENGRABEN WITH A SWING - LANDSCAPE AS THE GOVERNING FACTOR S. Quappen, D. Junker, J. Lüdders , G. Zehetmaier	234
SCHLOSSSTEG 2.0 R. Brandstötter	236
DEJIMA FOOTBRIDGE, MAKING A CONNECTION IN THE 400 YEARS' HISTORY. A STUDY ON CULTURAL MEANING OF BUILDING CONTEMPORARY BRIDGE R. Watanabe, E. Bodarwé, L. Ney	238
Historic Context and Reconstruction II	241
HISTORY OF THE RECONSTRUCTION AND MODERNIZATION OF THE BOLKO ISLAND PEDESTRIAN BRIDGE IN OPOLE J. Rabiega , S. Bolanowski, P. Watroba	242
RESTORATION OF THE ICONIC SHAW BRIDGE I. Nitschke , F. Griggs Jr.	244
RESTORATION OF THE BRIDGES OF OURO PRETO, MINAS GERAIS - MG, BRAZIL B. Oliveira	246
THE REFURBISHMENT OF THE LLANGOLLEN CHAINBRIDGE A. Marginson, L. Matthews	248
INNOVATION IN PROVIDING A SOLUTION TO RIVER SCOUR J. Hogger	250

Vodelling, Design and Construction 2	
INTELLIGENT FABRICATION - DIGITAL BRIDGES M. Tam, L. Bergis, D. Naicu, K. de Rycke, A. Orlinski, E. Jankowska	254
BICYCLE AND PEDESTRIAN BRIDGE SITTARD-GELEEN R. Torsing, R. Kieft	256
PARAMETRIC DESIGN FOR FOOTBRIDGE: A CASE STUDY L. Ren, H. Hou, X. Ruan	258
TOWARDS A FULLY DIGITAL MODELLING OF STEEL JOINTS AT ULS L. Tosini, M. Arquier, X. Cespedes	260
WHY WE WILL ALL BE LOOKING FOR A NEW JOB SOON, TRUE STORY BASED ON STUDY CASE OF ORKDAL FOOTBRIDGE M. Luczkowski, S. Dyvik, J. Mork, N. Rønnquist	262
Cables and Testing	265
STATE OF THE ART NEW PRODUCTS AND METHODS FOR CABLE BRIDGES SMALL AND BIG I. Siotor, T. Hermeking, C. Schloegl	266
ADVANCED CORROSION PROTECTION OF STRUCTURAL TENSION MEMBERS B. Allaert, F. Rentmeister	268
DUBAI CANAL FOOTBRIDGES: AN ENGINEERING REPLY TO A STUNNING ARCHITECTURAL CHALLENGE S. Geyer, D. Lombardini, P. Ferrante	270
MODELLING CONSTRUCTION OF FOOTBRIDGES WITH CABLES J. Lozano-Galant, J. Turmo	272
TESTING MAJOR FOOTBRIDGES IN ITALY A. Totaro, E. Siviero	274
FOOTBRIDGE LOAD TESTS IN POLAND: HISTORY, REGULATIONS, EXAMPLES, RESULTS D. Borek, Ł. Karkut, J. Kałuża, M. Wazowski	276
Movables	279
DESIGN OF MOVABLE BRIDGES - SELECTED EXAMPLES A. Kok, N. Degenkamp	280
THE ROLLOUT STRESS RIBBON BRIDGE B. Manum, A. Rønnquist, N. Labonnote, A. Aalberg	282
A NOVEL CONCEPT FOR A CABLE-STAYED MOVABLE FOOTBRIDGE T. Zhang, K. Kawaguchi, M. Wu	284

ARCHITECTURAL CONCEPT OF A CABLE-STAYED, MOVEABLE FOOTBRIDGE P. Hawrysków, W. Zielichowski-Haber, A. Rutecka-Blimke, A. Zachariasz 286

288

TURNING HEADS IN GDANSK

C. Bednarski

Scissors	291
A RIPPLED FOOTBRIDGE ACCESSIBLE FOR ALL E. Bouleau, G. Guscetti	292
SCISSORING ORIGAMI INSPIRED DEPLOYABLE BRIDGE FOR A DISASTER K. Adachi, I. Ario, Y. Chikahiro, S. Matsumoto	294
FUNDAMENTAL STUDY ON DYNAMIC PROPERTY OF DEPLOYABLE EMERGENCY BRIDGE USING SCISSORS MECHANISM Y. Chikahiro, I. Ario, K. Adachi, S. Shimizu, P. Pawlowski, C. Graczyokowski, J. Holnicki-Szulc	296
ORIGAMI INSPIRED DEPLOYABLE & MOVABLE BRIDGE FOR DISASTER RELIEF I. Ario, Y. Hama, Y. Chikahiro, K. Adachi, A. Watson	298

Materials I		
EXTREMELY LIGHT AND SLENDER PRECAST PEDESTRIAN-BRIDGE MADE OUT OF CARBON-CONCRETE S. Rempel, C. Kulas, J. Hegger	302	
PRE-DESIGN OF A MODULAR FOOTBRIDGE SYSTEM WITH PRE-TENSIONED CFRP REINFORCEMENT S. Perse, N. Will, J. Hegger	304	
THE SAW-TOOTH CONNECTOR: AN EFFECTIVE JOINT-ELEMENT FOR SLENDER CONCRETE DECKS A. Reimer, V. Schmid, H. Al-Kroom	306	
CABLE-STAYED FOOTBRIDGE WITH UHPC DECK IN CELAKOVICE M. Kalny, J. Komanec, V. Kvasnicka	308	
DEMONSTRATION FOOTBRIDGES MADE OF ULTRA-HIGH-PERFORMANCE CONCRETE AND FRP COMPOSITES W. Zatar, H. Nguyen, H. Mutsuyoshi	310	
AN EQUIVALENT HOMOGENEOUS MODEL FOR FRP SANDWICH BRIDGE DECK PANELS WITH SINUSOIDAL CORES B. Mandal , A. Chakrabarti	312	
Materials II 315		
SUSTAINABLE PEDESTRIAN BRIDGE USING ADVANCED MATERIALS (SUPERBAM) L. Pellegrini, R. Ribó, J. Jordan, J. Sobrino	316	
FULLY BIO-BASED-COMPOSITE FOOTBRIDGE: STRAIN MONITORING DURING USE PHASE R. Blok, P. Teuffel	318	

THE KuBAaL FOOTBRIDGES IN BOCHOLT/GERMANY -THE CLIENT'S WISH TO USE LOW MAINTENANCE MATERIALS K. Baumann, M. Gabler, E. Thie

FORT YORK PEDESTRIAN BRIDGES IN TORONTO. THE TWO FIRST DUPLEX STAINLESS STEEL BRIDGES IN NORTH AMERICA J. Sobrino, J. Jordan, S. Carratala, D. Sisi 320

322

Materials III		325
	SOLID TIMBER BRIDGE CONSTRUCTIONS Design by material F. Miebach, D. Niewerth	326
	DESIGN OF A STRESS RIBBON GLULAM FOOTBRIDGE ACROSS A STEEP FOREST TORRENT P. Hsieh, Y. Liu, Y. Tung, C. Chuang, P. Chen, L. Cheng, C. Chien	328
	HOW TO MAKE THE LARGEST FOOTBRIDGE OVER A MOTORWAY IN SPAIN(IN TIMBER) J. Vivas, J. Santos	330
	EASILY CONSTRUCTABLE BAMBOO FOOTBRIDGES FOR RURAL AREAS T. Paraskeva, E. Dimitrakopoulos, G. Grigoropoulos	332

Dynamics

R	esponse and Structural Behaviour	335
	FOOTBRIDGES. DYNAMIC DESIGN - SELECTED PROBLEMS K. Zoltowski, M. Binczyk, P. Kalitowski	336
	WIND TUNNEL TESTS AND FULL-SCALE MEASUREMENTS ON A CABLE-STAYED FOOTBRIDGE G. Bartoli, M. Gioffre´, C. Mannini, A. Marra, T. Massai, C. Pepi, L. Pigolotti	338
	VIBRATION ANALYSIS OF A LONG-SPAN BRIDGE WITH A SUSPENDED PAVEMENT SYSTEM (SPS) CAUSED BY THE VEHICLE EXCITATION C. Cui, R. Ma, D. Wang , A. Chen	340
	WIND AND PEDESTRIAN VIBRATION ASSESSMENT ON THE NEW SWAN RIVER PEDESTRIAN BRIDGE N. Cosentino, M. Majowiecki, S. Pinardi	342
	EFFECT OF PRETENSION ON THE DYNAMIC RESPONSE OF FOOTBRIDGES R. Brasil, V. Della Monica, H. Braglia Pacheco	344
	NUMERICAL ANALYSIS OF VIBRATIONS IN SUSPENSION FOOTBRIDGE UNDER PEDESTRIAN TRAFFIC S. Pereira, G. Doz	346
Vibration Performance 34		
	"TRIPOD" FOOTBRIDGE IN TERNI (ITALY): ON SITE DYNAMIC CHARACTERIZATION AND NUMERICAL INVESTIGATION OF LOCK-IN O. Manfroni, R. Benedetti	350
	EXPERIMENTAL VERIFICATION OF THE DYNAMIC PERFORMANCE OF A FOOTBRIDGE UNDER HIGH PEDESTRIAN DENSITIES K. Van Nimmen, P. Van Den Broeck	352
	EVALUATION OF THE EXPERIMENTAL AND ANALYTICAL DYNAMIC RESPONSE OF PEDESTRIAN BRIDGES <i>M. Mendoza, R. Gomez, G. Arroyo, J. Escobar, R. Flores</i>	354
	DYNAMIC RESPONSE OF GIRDER FOOTBRIDGES WITH SUPPLEMENTAL DAMPING N. Garcia-Troncoso, A. Ruiz-Teran, P. Stafford	356
	DESIGN, CONSTRUCTION AND DYNAMIC ANALYSIS OF A LABORATORY-SCALE FRP COMPOSITE FOOTBRIDGE P. Archbold, B. Mullarney	358

	oad Models for Pedestrians	363
		0000
	ON A FULL SCALE EXPERIMENTAL FOOTBRIDGE A. Firus, J. Schneider, A. Seyfarth, C. Schumacher	304
	APPLICATION OF THE TUNED MASS DAMPER CONCEPT TO THE MODELLING OF PEDESTRIAN-STRUCTURE INTERACTION E. Caetano, C. Gaspar, J. Santos Silva, C. Moutinho	366
	PARTIAL SQUATS - THE DYNAMIC LOAD OF THE FOOTBRIDGES M. Pańtak	368
	A FULL PROBABILISTIC MODEL FOR LOADS INDUCED BY WALKING C. Sahnaci, M. Kasperski	370
	VERTICAL VIBRATION OF COMPLEX AND SLENDER FOOTBRIDGES DUE TO STOCHASTIC CROWD-INDUCED EXCITATION J. Zhong, X. Xie, H. Zhang	372
	VERTICAL ACCELERATIONS DUE TO JOGGERS OF A SHORT SPAN FOOTBRIDGE F. Beers	374
Serviceability I		377
	PERCEPTIBILITY OF VIBRATIONS BY PEDESTRIANS B. Czwikla, M. Kasperski	378
	SERVICEABILITY RESPONSE OF A BENCHMARK CABLE-STAYED FOOTBRIDGE: COMPARISON OF AVAILABLE METHODS C. Ramos-Moreno, A. Ruiz-Teran, P. Stafford	380
	KEY FINDINGS FROM SERVICEABILITY STUDIES ON ALUMINUM FOOTBRIDGES P. Dey, S. Narasimhan, S. Walbridge	382
	LONG-TERM VIBRATION SERVICEABILITY ASSESSMENT OF A STEEL-PLATED STRESS-RIBBON FOOTBRIDGE J. Soria, I. Díaz, J. García-Palacios, A. Lorenzana	384
	THE EFFECT OF RUNNERS ON FOOTBRIDGES - A CASE STUDY E. Zäll, J. Garmendia Purroy, A. Andersson , M. Ülker-Kaustell	386
	STUDY OF THE GROUP EFFECTS ON THE VIBRATION SERVICEABILITY OF SLENDER FOOTBRIDGES M. Setareh	388
c	onvice ability II	301
0		591
	DESIGN AND VIBRATION SERVICEABILITY EVALUATION OF PEDESTRIAN SPACE ARCH BRIDGE P. Cheolung, K. Dabeom, C. Daehun, K. Dongseok, P. Jaeyong	392
	FUZZY PROBABILISTIC METHOD OF FOOTBRIDGE VIBRATION SERVICEABILITY ASSESSMENT UNDER PEDESTRIAN LOADS L. Ke, R. Ma, A. Chen	394
	ASSESSMENT OF VIBRATION SERVICEABILITY OF A LARGE-SPAN CABLE-SUPPORTED FOOTBRIDGE IN THE SCENIC AREA D. Wang , L. Ke, R. Ma	396
	DYNAMIC CONSIDERATIONS IN CASE OF FOOTBRIDGES WITH ELEVATORS M. Vicente , A. Lichtenfels, D. González	398
	EXPERIMENTAL INVESTIGATION OF THE VIBRATION SUSCEPTIBILITY OF FOOTBRIDGES FOR SUBCRITICAL VIBRATION MODES C. Meinhardt, C. Sahnaci	400

Vibration Control and Monitoring I		403
	ECONOMIC APPROACH TO DAMPING TRAIL-STYLE FOOTBRIDGES S. Valdovinos, J. Rice	404
	NEW REAL-TIME CONTROLLED SEMI-ACTIVE TUNED MASS DAMPER FOR HUMAN, VORTEX AND WIND EXCITATIONS	406
	VIBRATION CONTROL OF FOOTBRIDGES UNDER PEDESTRIAN LOADING USING TUNED MASS DAMPER SYSTEMS WITH EDDY CURRENT DAMPER TECHNOLOGY D. Saige, J. Engelhardt, S. Katz	408
	PERFORMANCE OF MTMD SYSTEMS BASED ON REALISTIC LOAD CONTRIBUTIONS DUE TO WALKING <i>C. Sahnaci, C. Meinhardt, T. Krampe</i>	410
	TOWARDS DEPLOYABLE, AUTONOMOUS, VIBRIATION CONTROL SYSTEMS FOR LIGHTWEIGHT FOOTBRIDGES K. Goorts, S. Narasimhan	412
	MODEL-BASED ACTIVE VIBRATION CONTROL FOR NEXT GENERATION BRIDGES USING REDUCED FINITE ELEMENT MODELS R. Jirasek, T. Schauer, A. Bleicher	414
V	Vibration Control and Monitoring II	
	CONTROL OF HUMAN-INDUCED VIBRATION OF FOOTBRIDGE USING TUNED MASS DAMPERS DESIGNED BY LQR ALGORITHM Z. Liu, H. Huang	418
	IMPLEMENTATION OF A DYNAMIC MONITORING SYSTEM FOR AN BUTTERFLY ARCH FOOTBRIDGE D. Tang, W. Hu, J. Teng	420
	STRUCTURAL SYSTEM IDENTIFICATION OF PEDESTRIAN BRIDGES BY OBSERVABILITY METHOD J. Lei, J. Lozano-Galant, M. Nogal, D. Xu, J. Turmo	422
	TIME-FREQUENCY-BASED ANALYSIS OF PEDESTRIAN INDUCED VIBRATION USING A TWO-STEP CLUSTERING APPROACH A. Goldack, A. Jansen, S. Narasimhan	424
	COMPUTING SERVICEABILITY PREDICTORS FOR AN IN-SERVICE FOOTBRIDGE I. Díaz, J. García-Palacios, A. García-Cruz, J. Soria	426