Seismic Isolation System of the Djamaâ El Djazir Mosque in Algiers

Luca PAROLI
Mechanical Engineer
Maurer Soehne GmbH
Munich, Germany
paroli@maurer-soehne.de

Luca Paroli, born 1980, received his mechanical engineering degree from the University of Roma Tre, Italy. He has been working as a Sales engineer at Maurer Söhne for 7 years. His main area of activity is related to seismic isolation.

Summary

The construction of the third biggest mosque in the world - Djamaâ El Djazaïr - began in Algiers in early 2013. Due to the high specified PGA of $6.5 \mathrm{~m} / \mathrm{s}^{2}$ the building, extending over an area of 145 x 145 m and up to 65 m height, has been isolated with 246 curved surface sliders and 80 hydraulic dampers to provide an overall 8% damping and limit the maximum seismic displacement to 500 mm . The dampers display a soft response with a damping exponent of 0.4 for velocities up to $1000 \mathrm{~mm} / \mathrm{s}$, whereas an integrated force limiter working between 1000 and $1200 \mathrm{~mm} / \mathrm{s}$ was installed in order not to overload the whole system for the maximum credible earthquake.
European Community CE marking and testing according to EN15129 [4] was performed at the University of California in San Diego and at the Eucentre in Pavia. A theoretical service life span of 500 years was proven by wear and fatigue testing.
Keywords: curved surface sliders, isolators, hydraulic dampers

1. INTRODUCTION

Northern Algeria is located in a seismic zone. For this reason a prestigious and important project like the new Grand Mosque of Algeria had to be suitably protected against earthquakes, particularly the prayer hall.

Figure 1 - Grand Mosque of Algier - Djamaâ El Djazïr Mosque

