



# **Remaining Capacity of Corroded Gusset Plate Connection**

| Takeshi MIYASHITA                              | Ngoc Vinh PHAM                                    | Kazuo OHGAKI                                             |
|------------------------------------------------|---------------------------------------------------|----------------------------------------------------------|
| Associate Professor                            | Ph.D Candidate                                    | Professor                                                |
| Nagaoka University of Technology               | Nagaoka University of Technology                  | Institute of Technologists                               |
| Nagaoka, Japan<br>mtakeshi@vos.naqaokaut.ac.jp | Nagaoka, Japan<br><u>ngocvinhqv@gmail.com</u>     | Gyoda, Japan<br><u>ohgaki@iot.ac.jp</u>                  |
|                                                |                                                   |                                                          |
| Yusuke OKUYAMA<br>Associate Professor          | Yuya HIDEKUMA                                     | Takuya HARADA                                            |
|                                                | Yuya HIDEKUMA<br>Nippon Steel Chemical & Material | Takuya HARADA<br>Nippon Expressway Research<br>Institute |

Contact: <u>mtakeshi@vos.nagaokaut.ac.jp</u>

#### 1 Abstract

Nowadays, severe damage on the gusset plate connection of steel truss bridges due to corrosion has been widely reported all over the world. In this context, the remaining load-carrying capacity of a corroded gusset plate connection was evaluated by using the loading test and Finite Element Method (FEM) analysis. Two potential forms of corrosion on the gusset plate, namely welding and cross-sectional corrosion, were proposed to investigate the reduction of load-carrying capacity. The overall FEM model dimension for the real bridge was scaled down by a percentage of 50%. The degrees of corrosion sections were assumed disconnected at about 50% of the weld length and the loss of the gusset plate thickness was 50% and 75%. Parametric FEM analysis was performed to evaluate the effect of the degree of corrosion on the remaining load-carrying capacity of the gusset plate connection.

Keywords: steel truss bridges; corrosion; load-carrying capacity; experiment; FEA.

## 2 Introduction

Many existing steel truss bridges are considered "old" ages from 50 to over 100 years [1]. In steel truss bridges, corrosion is frequently found in the gusset plate that connects members, particularly where the plate connects to the upper flange of the lower chord member [2]. This corrosion is simply due to the complex shape in this region, which readily accumulate debris and water. The gusset plate connections of a truss bridge are considered to be structurally critical components of the truss structure system. However, a lot of research conducted considering the load-carrying capacity of the gusset plate focusing the design stage [3, 4]. But only a few researchers have found about the damage consideration. Therefore, the purpose of this study is to evaluate the remaining load-carrying capacity of the corroded gusset plate connection performing both the loading tests and FEM analysis.

## 3 Loading tests

#### 3.1 Specimen shape

In this study, monolithic-type specimens, which were approximately 50% of the size of the real bridge, were used. Their dimensions were decided