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Summary 
An unstiffened double split-tee beam-to-column bolted connection is one of the “weldless” beam-
to-column connections. In the present study, structural performance of steel framework including 
the unstiffened connection is investigated. Cyclic loading tests of subassemblages including the 
unstiffened connections are performed, and validities of yield strength prediction by plastic analysis 
and finite element analysis to predict cyclic behavior are also investigated. 
Keywords: beam-to-column connection; weldless; split-tee; subassemblage; cyclic behavior. 
 

1. Introduction 
In most of damaged steel buildings under Hyogo Ken Nanbu 
Earthquake in 1995, many full-penetration weld connections 
at beam ends fractured. Since the earthquake, to prevent the 
brittle fracture, many studies on weldless steel framing 
system have been conducted in Japan. In the present study, 
unstiffened (i.e. without stiffening plates) double split-tee 
bolted beam-to-column connection (Fig. 1) is experimentally 
investigated by cyclic loading tests (Fig. 2). Finite element 
analysis to simulate the cyclic behavior is also performed. 
 

2. Beam-to-Major Axis Column Connection 
T-shaped and cruciform subassemblages with beam-to-major axis column connection are used for 
cyclic loading tests (Fig. 3). The beam-to-column connection is designed so that out-of-plane 
deformation of plate elements of the column member may dominate connection behavior. 
Experimental load-deformation relationship curves show stable hysteretic loops (Fig. 3). Estimated 
yield strengths by yield line analysis and monotonic load-deformation prediction curves are also 
shown in the figures; those predictions well correspond to the experimental results. 
 

3. Beam-to-Minor Axis Column Connection 
T-shaped and cruciform subassemblages with beam-to-minor axis column connection are used (Fig. 
5). Experimental load-deformation relationship curves show stable hysteretic loops (Fig. 5). 
Estimated yield strengths by yield line analysis and cyclic load-deformation prediction curves 
obtained by finite element analysis (Fig. 4) are also shown in the figures; those predictions well 
correspond to the experimental results.  

Fig. 1: Unstiffened double split-tee
beam-to-column bolted connection
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4. Conclusions 
Structural performance of the unstiffened double split-tee beam-to-column connection is 
investigated experimentally and analytically. The cyclic loading tests of subassemblages including 
the unstiffened connections are performed and the specimens show good and stable hysteretic 
deformation capacity. The yield strengths of the specimens can be estimated by yield line analysis, 
and cyclic behaviors of the specimens can be numerically simulated by finite element analysis. 
Based on the knowledge obtained, seismic design of steel frameworks with the unstiffened 
connection will be investigated. 
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(a) T-shaped subassemblage 
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(b) Cruciform subassemblage 
Fig. 5: Load-Deformation Relationships (Beam-to-Minor-Axis
Column Connection) 
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(a) T-shaped subassemblage 
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(b) Cruciform subassemblage 
Fig. 3: Load-Deformation Relationships (Beam-to-Major-Axis
Column Connection) 

 
 
 
 

Fig. 2: Setup example of
loading tests 

 

 
(a) T-shaped subassemblage 

(b) Cruciform subassemblage 
Fig. 4: Finite element models
of subassemblages (beam-to-
minor-axis column connection) 
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